A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Orbital Implant Length and Diameter on Stress Distribution: A Finite Element Analysis. | LitMetric

Influence of Orbital Implant Length and Diameter on Stress Distribution: A Finite Element Analysis.

J Craniofac Surg

*Department of Stomatology, Guangdong Provincial Hospital of Traditional Chinese Medicine †Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Published: March 2017

Purpose: A mathematical simulation of stress distribution around orbital implants was used to determine which length and diameter of implants would be best to dissipate stress.

Methods: An integrated system for computed tomography data was utilized to create a 3-dimensional model of craniofacial structures. The model simulated implants placed in the 7, 11, and 12 o'clock positions of the orbital rim. A load of 2 N was applied to the model along the long axis of the implant (model 1) and an angle of 45° with the long axis of the implant (model 2). A model simulating an implant with a diameter of 3.75 mm and lengths of 3, 4, 6, 8, and 10 mm was developed to investigate the influence of the length factor. The influence of different diameters was modeled using implants with a length of 6 mm and diameters of 3.0, 3.75, 4.2, 5.0, and 6.0 mm. Values of von Mises equivalent stress at the implant-bone interface were computed using the finite element analysis for all variations.

Results: The elements exposed to the maximum stress were located around the root of the orbital implant in model 1 or between the neck and the first thread of the orbital implant in model 2. An increase in the orbital implant diameter led to a decrease in the maximum von Mises equivalent stress values. In model 1, the reductions were 45.2% (diameter of 3.0-3.75 mm), 25.3% (diameter of 3.75-4.2 mm), 17.2% (diameter of 4.2-5.0 mm), and 5.4% (diameter of 5.0-6.0 mm). In model 2, the reductions of the maximum stress values were 51.9%, 35.4%, 19.7%, and 8.1% respectively. However, the influence of orbital implant length was not as pronounced as that of diameter. In model 1, the reductions were 28.8% (length of 3-4 mm), 19.2% (length of 4-6 mm), 9.6% (length of 6-8 mm), and 4.3% (length of 8-10 mm). In model 2, the reductions of the maximum stress values were 35.5%, 21.1%, 10.9%, and 5.4% respectively.

Conclusions: An increase in the implant diameter decreased the maximum von Mises equivalent stress around the orbital implant more than an increase in the implant length. From a biomechanical perspective, the optimum choice was an orbital implant with no less than 4.2 mm diameter allowed by the anatomy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367500PMC
http://dx.doi.org/10.1097/SCS.0000000000003305DOI Listing

Publication Analysis

Top Keywords

orbital implant
28
implant model
16
model reductions
16
implant
12
implant length
12
model
12
implant diameter
12
von mises
12
mises equivalent
12
equivalent stress
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!