Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-Lewis (SLe ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLe is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201610395DOI Listing

Publication Analysis

Top Keywords

phpma backbone
8
o-sulfated tyramine
8
side chains
8
polymeric selectin
4
selectin ligands
4
ligands mimicking
4
mimicking complex
4
complex carbohydrates
4
carbohydrates selectin
4
selectin binders
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!