Proteins that contain iron-sulfur (Fe-S) clusters play pivotal roles in various metabolic processes such as photosynthesis and redox metabolism. Among the proteins involved in the biosynthesis of Fe-S clusters in plants, the SUFB subunit of the SUFBCD complex appears to be unique because SUFB has been reported to be involved in chlorophyll metabolism and phytochrome-mediated signaling. To gain insights into the function of the SUFB protein, we analyzed the phenotypes of two SUFB mutants, laf6 and hmc1, and RNA interference (RNAi) lines with reduced SUFB expression. When grown in the light, the laf6 and hmc1 mutants and the SUFB RNAi lines accumulated higher levels of the chlorophyll biosynthesis intermediate Mg-protoporphyrin IX monomethylester (Mg-proto MME), consistent with the impairment of Mg-proto MME cyclase activity. Both SUFC- and SUFD-deficient RNAi lines accumulated the same intermediate, suggesting that inhibition of Fe-S cluster synthesis is the primary cause of this impairment. Dark-grown laf6 seedlings also showed an increase in protoporphyrin IX (Proto IX), Mg-proto, Mg-proto MME and 3,8-divinyl protochlorophyllide a (DV-Pchlide) levels, but this was not observed in hmc1 or the SUFB RNAi lines, nor was it complemented by SUFB overexpression. In addition, the long hypocotyl in far-red light phenotype of the laf6 mutant could not be rescued by SUFB overexpression and segregated from the pale-green SUFB-deficient phenotype, indicating it is not caused by mutation at the SUFB locus. These results demonstrate that biosynthesis of Fe-S clusters is important for chlorophyll biosynthesis, but that the laf6 phenotype is not due to a SUFB mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347852PMC
http://dx.doi.org/10.1111/tpj.13455DOI Listing

Publication Analysis

Top Keywords

rnai lines
16
sufb
12
fe-s clusters
12
mg-proto mme
12
biosynthesis fe-s
8
laf6 hmc1
8
sufb rnai
8
lines accumulated
8
chlorophyll biosynthesis
8
sufb overexpression
8

Similar Publications

Unlabelled: Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance.

View Article and Find Full Text PDF

CircZmMED16 delays plant flowering by negatively regulating starch content through its binding to ZmAPS1.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.

Circular RNAs (circRNAs), a type of head-to-tail closed RNA molecules, have been implicated in various aspects of plant development and stress responses through transcriptome sequencing; however, the precise functional roles of circRNAs in plants remain poorly understood. In this study, we identified a highly expressed circular RNA, circZmMED16, derived from exon 8 of the mediator complex subunit 16 (ZmMED16) across different maize (Zea mays L.) inbred lines using circRNA-seq analysis.

View Article and Find Full Text PDF

Enhanced Resistance to Pokkah Boeng Disease in Sugarcane Through Host-Induced Gene Silencing Targeting FsCYP51 in Fusarium sacchari.

Plant Cell Environ

January 2025

State Key Lab for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China.

Pokkah boeng disease (PBD), a common and highly destructive disease of sugarcane, is mainly caused by Fusarium sacchari. Breeding sugarcane resistant to PBD is challenging due to the limited availability of immune or highly resistant germplasm resources. Host-induced gene silencing (HIGS) based on RNA interference (RNAi) is a promising disease-control method that offers strong disease-targeting ability with low environmental impact.

View Article and Find Full Text PDF

OsFKBP12 transduces the sucrose signal from OsNIN8 to the OsTOR pathway in a loosely binding manner for cell division.

iScience

January 2025

Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Previously, OsNIN8 initiated a sucrose signal for cell division in radicle and seed development in rice. Here, a set of genes was induced in starved sprouts after sucrose treatment, and 14 genes were screened between ZH11 and as reporters of sucrose signal. Expressions of reporter depended on levels of in overexpression and RNAi lines.

View Article and Find Full Text PDF

The WRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of in our previous research, and we also produced several overexpression (OEXs) and RNAi suppression (REXs) × lines. In order to further compare the photosynthetic and physiological characteristics of NT (non-transgenic line) and transgenic lines under salt stress, the dynamic phenotypic change, Na and K content in leaf and root tissues, superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content, chlorophyll content (Chl), photosynthesis parameters (net photosynthetic rate, P; stomatal conductance, Gs; intercellular CO concentration, C; transpiration rate, T), chlorophyll fluorescence parameters (electron transport rate, ETR; maximum photochemical efficiency of photosystem II (PSII), F/F; actual efficiency of PSII, Φ; photochemical quenching coefficient, q; non-photochemical quenching, NPQ; the photosynthetic light-response curves of Φ and ETR) and RNA-seq of NT, OEX and REX lines were detected and analyzed. The phenotypic observation, MDA content and Chl detection results indicate that the stress damage of REXs was less severe than that of NT and OEX lines under salt stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!