The susceptible-infected-recovered (SIR) model has been used extensively to model disease spread and other processes. Despite the widespread usage of this ordinary differential equation (ODE) based model which represents the mean-field approximation of the underlying stochastic SIR process on contact networks, only few rigorous approaches exist and these use complex semigroup and martingale techniques to prove that the expected fraction of the susceptible and infected nodes of the stochastic SIR process on a complete graph converges as the number of nodes increases to the solution of the mean-field ODE model. Extending the elementary proof of convergence for the SIS process introduced by Armbruster and Beck (IMA J Appl Math, doi: 10.1093/imamat/hxw010 , 2016) to the SIR process, we show convergence using only a system of three ODEs, simple probabilistic inequalities, and basic ODE theory. Our approach can also be generalized to many other types of compartmental models (e.g., susceptible-infected-recovered-susceptible (SIRS)) which are linear ODEs with the addition of quadratic terms for the number of new infections similar to the SI term in the SIR model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-016-1086-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!