Density functional theory calculations were carried out in order to study the effects of the adsorption of acrolein molecule on the structural and electronic properties of TiO2 anatase nanoparticles. The ability of pristine and N-doped TiO2 anatase nanoparticles to recognize toxic acrolein (C3H4O) molecule was surveyed in detail. It was concluded that acrolein molecule chemisorbs on the N-doped anatase nanoparticles with large adsorption energy and small distance with respect to the nanoparticle. The results indicate that the adsorption of acrolein on the N-doped TiO2 is energetically more favorable than the adsorption on the pristine one, suggesting that the N doping can energetically facilitate the adsorption of acrolein on the N-doped nanoparticle. It means that the N-doped TiO2 nanoparticle can react with acrolein molecule more efficiently. The interaction between acrolein molecule and N-doped TiO2 can induce substantial variations in the HOMO/LUMO molecular orbitals of the nanoparticle, changing its electrical conductivity which is helpful for developing novel sensor devices for the removal of harmful acrolein molecule. The large overlaps in the projected density of states spectra reveal the formation of chemical bond between two interacting atoms. Charge analysis based on Mulliken charges indicates that charge is transferred from the acrolein molecule to the TiO2 nanoparticle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17344/acsi.2016.2350 | DOI Listing |
BMC Res Notes
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France.
Electronic polarization and dispersion are decisive actors in determining interaction energies between molecules. These interactions have a particularly profound effect on excitation energies of molecules in complex environments, especially when the excitation involves a significant degree of charge reorganization. The direct reaction field (DRF) approach, which has seen a recent revival of interest, provides a powerful framework for describing these interactions in quantum mechanics/molecular mechanics (QM/MM) models of systems, where a small subsystem of interest is described using quantum chemical methods and the remainder is treated with a simple MM force field.
View Article and Find Full Text PDFNeurosci Lett
January 2025
CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique & Université de Strasbourg, France. Electronic address:
Nociception is defined as "the neural process of encoding noxious stimuli" by the International Association for the Study of Pain (IASP). Nociception relies on detecting noxious stimuli arising from a potentially or actually tissue-damaging event via specialized cells called nociceptors. In planarians, nociceptive behavior is often indicated by a 'scrunching' gait, in contrast to the usual gliding behavior displayed in normal conditions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China. Electronic address:
The purpose of this research is to investigate multiple structural spice aldehydes (cinnamaldehyde (CA), citronellal (CN), and melonal (MA)) interact with myofibrillar protein in grass carp (GCMP) and the effects of interfacial interactions on stability properties of Pickering emulsion. It was demonstrated that the functional characteristics of interfacial protein might be greatly improved by the complexation of spice aldehydes with protein particles at the water-oil interface. The fluorescence quenching and molecular docking results revealed that the binding mode of spice aldehyde is primarily dominated by hydrophobic interactions, yet there are hydrogen bonding interactions exist in special structure.
View Article and Find Full Text PDFChemSusChem
October 2024
Department of Catalytic Synthesis Based on Single-Carbon Molecules, L.V. Pysarzhevskii Institute of Physical Chemistry National Academy of Sciences of Ukraine, Prospect Nauki, 31, 03039, Kyiv, Ukraine.
The catalytic performance of phosphate-stabilized WO-ZrO compositions in gas-phase glycerol dehydration has been investigated. Results show that varying WO concentrations direct the process towards either acrolein or allyl alcohol formation. Catalysts with low WO content exhibit strong Lewis acid sites (Zr and W), where these metal ions likely function as redox sites, facilitating glycerol hydrogenolysis to produce allyl alcohol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!