T-Acute Lymphoblastic Leukemia (T-ALL) remains a subgroup of pediatric ALL, with a lower response to standard chemotherapy. Some recent studies established the fundamental role of epigenetic aberrations such as DNA hypermethylation, to influence patients' outcome and response to chemotherapy. Moreover, L-asparaginase is an important chemotherapeutic agent for treatment of ALL and resistance to this drug has been linked to expression, which can be silenced through methylation. Therefore, we tested whether the sensitivity of T-ALL cell lines towards L-asparaginase is correlated to the epigenetic status of gene and whether the sensitivity can be modified by concurrent demethylating treatment. Hence we treated different T-ALL cell lines with L-asparaginase and correlated different responses to the treatment with expression. Then we demonstrated that the expression was dependent on the methylation status of the promoter. Finally we showed that, despite the demethylating effect on the gene expression, the combined treatment with the demethylating agent Decitabine could synergistically improve the L-asparaginase sensitivity in those T-ALL cell lines characterized by hypermethylation of the gene. In conclusion, this preclinical study identified an unexpected synergistic activity of L-asparaginase and Decitabine in the subgroup of T-ALL with low expression due to hypermethylation of the promoter, while it did not restore sensitivity in the resistant cell lines characterized by higher expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5150123PMC
http://dx.doi.org/10.1155/2016/1985750DOI Listing

Publication Analysis

Top Keywords

cell lines
16
t-all cell
12
demethylating agent
8
sensitivity t-all
8
lines l-asparaginase
8
l-asparaginase correlated
8
lines characterized
8
l-asparaginase
6
t-all
6
expression
6

Similar Publications

Lewy body diseases and the gut.

Mol Neurodegener

January 2025

Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.

Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation.

View Article and Find Full Text PDF

Identification and validation of a prognostic signature of drug resistance and mitochondrial energy metabolism-related differentially expressed genes for breast cancer.

J Transl Med

January 2025

Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.

View Article and Find Full Text PDF

Introduction: Although there are a number of neoadjuvant immunotherapy combinations that can be applied to the treatment of perioperative non-small cell lung cancer patients, the optimal treatment combination strategy has not yet been determined.

Methods: We searched PubMed, EMBASE, Cochrane Library, ClinicalTrials.go and randomised controlled trials (RCTs) from major international conferences for literature related to neoadjuvant immunotherapy combinations published as first-line treatment options for non-small cell lung cancer from the start of the library to 20 February 2024, and performed a systematic review and network meta-analysis.

View Article and Find Full Text PDF

Cytotoxicity and genotoxicity of orthodontic bands after aging: an in-vitro study.

BMC Oral Health

January 2025

Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-3119, Shiraz, Iran.

Background: This investigation sought to evaluate cytotoxic and genotoxic effects of two different types of orthodontic bands after aging in acidic and neutral artificial saliva using human gingival fibroblast-like (HGF1-PI 1) cell lines.

Methods: Two commercial brands of orthodontic molar bands (American orthodontic (AO) and 3 S-dental bands), commonly used by orthodontists, were tested. These bands were divided into four groups to examine the effects of aging following thermocycling, and pH variations (pH = 4.

View Article and Find Full Text PDF

Genes related to neural tube defects and glioblastoma.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.

There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!