HLA matching provides numerous benefits in organ transplantation including better graft function, fewer rejection episodes, longer graft survival, and the possibility of reduced immunosuppression. Mismatches are attended by more frequent rejection episodes that require increased immunosuppression that, in turn, can increase the risk of infection and malignancy. HLA mismatches also incur the risk of sensitization, which can reduce the opportunity and increase waiting time for a subsequent transplant. However, other factors such as donor age, donor type, and immunosuppression protocol, can affect the benefit derived from matching. Furthermore, finding a well-matched donor may not be possible for all patients and usually prolongs waiting time. Strategies to optimize transplantation for patients without a well-matched donor should take into account the immunologic barrier represented by different mismatches: what are the least immunogenic mismatches considering the patient's HLA phenotype; should repeated mismatches be avoided; is the patient sensitized to HLA and, if so, what are the strengths of the patient's antibodies? This information can then be used to define the HLA type of an immunologically optimal donor and the probability of such a donor occurring. A probability that is considered to be too low may require expanding the donor population through paired donation or modifying what is acceptable, which may require employing treatment to overcome immunologic barriers such as increased immunosuppression or desensitization. Thus, transplantation must strike a balance between the risk associated with waiting for the optimal donor and the risk associated with a less than optimal donor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141243PMC
http://dx.doi.org/10.3389/fimmu.2016.00575DOI Listing

Publication Analysis

Top Keywords

optimal donor
12
donor
9
organ transplantation
8
rejection episodes
8
increased immunosuppression
8
waiting time
8
well-matched donor
8
risk associated
8
hla
6
mismatches
5

Similar Publications

In vitro sperm generation from immature mouse testicular tissue using plasma rich in growth factors.

Stem Cell Res Ther

January 2025

Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Background: Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR.

Methods: Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring.

View Article and Find Full Text PDF

The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.

View Article and Find Full Text PDF

"Pure Fat Flap"-Perforator-based Adiposal Layer Only Flap for Lateral Ankle Reconstruction.

Arch Plast Surg

January 2025

Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Lateral ankle soft tissue defects pose challenges, especially in cases due to chronic pressure from cross-legged sitting, which usually present with a large dead space, small skin opening that often accompanies an open joint. Traditional reconstruction methods using fasciocutaneous flaps may result in donor site morbidity such as delayed wound healing or nerve injury. In this article, we present a case of diabetes-related lateral ankle defect successfully treated using adiposal layer only flap, also known as pure fat flap.

View Article and Find Full Text PDF

Steroidal saponins in Paris polyphylla featuring complicated sugar chains exhibit notable biological activities, but the sugar chain biosynthesis is still not fully understood. Here, we identified a 4'-O-rhamnosyltransferase (UGT73DY2) from P. polyphylla, which catalyzes the 4'-O-rhamnosylation of polyphyllins V and VI, producing dioscin and pennogenin 3-O-β-chacotrioside, respectively.

View Article and Find Full Text PDF

Thiophene Copolymer Donors Containing Ester-Substituted Thiazole for Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!