Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted "noncoding RNAs" to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204337PMC
http://dx.doi.org/10.1101/gr.201368.115DOI Listing

Publication Analysis

Top Keywords

assembly annotation
12
annotation genomes
12
transcriptomic proteomic
8
accurate assembly
8
gene models
8
events joining
8
genome
6
assembly
5
annotation
5
genomes
5

Similar Publications

Stinging nettles () have a long history of association with human civilization, having been used as a source of textile fibers, food and medicine. Here, we present a chromosome-level, phased genome assembly for a diploid female clone of from Romania. Using a combination of PacBio HiFi, Oxford Nanopore, and Illumina sequencing, as well as Hi-C long-range interaction data (using a novel Hi-C protocol presented here), we assembled two haplotypes of 574.

View Article and Find Full Text PDF

Background: Identification of global transcriptional events is crucial for genome annotation, as accurate annotation enhances the efficiency and comparability of genomic information across species. However, the annotation of transcripts in the cucumber genome remains to be improved, and many transcriptional events have not been well studied.

Results: We collected 1,904 high-quality public cucumber transcriptome samples from the National Center for Biotechnology Information (NCBI) to identify and annotate transcript isoforms in the cucumber genome.

View Article and Find Full Text PDF

Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations.

View Article and Find Full Text PDF

Somion occarium is a wood-decaying bracket fungus belonging to an order known to be rich in useful chemical compounds. Despite its widespread distribution, S. occarium has been assessed as endangered on at least one national Red List, presumably due to loss of old-growth forest habitat.

View Article and Find Full Text PDF

The number of high-quality genomes is rapidly increasing across taxa. However, it remains limited for coral reef fish of the Pomacentrid family, with most research focused on anemonefish. Here, we present the first assembly for a Pomacentrid of the genus .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!