Motivation: A Bayesian Network is a probabilistic graphical model that encodes probabilistic dependencies between a set of random variables. We introduce bnstruct, an open source R package to (i) learn the structure and the parameters of a Bayesian Network from data in the presence of missing values and (ii) perform reasoning and inference on the learned Bayesian Networks. To the best of our knowledge, there is no other open source software that provides methods for all of these tasks, particularly the manipulation of missing data, which is a common situation in practice.

Availability And Implementation: The software is implemented in R and C and is available on CRAN under a GPL licence.

Contact: francesco.sambo@unipd.it.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btw807DOI Listing

Publication Analysis

Top Keywords

bayesian network
12
presence missing
8
missing data
8
open source
8
bnstruct package
4
bayesian
4
package bayesian
4
network structure
4
structure learning
4
learning presence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!