Passive heat induces beneficial perfusion profiles, provides substantive cardiovascular strain, and reduces blood pressure, thereby holding potential for healthy and cardiovascular disease populations. The aim of this study was to assess acute responses to passive heat via lower-limb, hot-water immersion in patients with peripheral arterial disease (PAD) and healthy, elderly controls. Eleven patients with PAD (age 71 ± 6 yr, 7 male, 4 female) and 10 controls (age 72 ± 7 yr, 8 male, 2 female) underwent hot-water immersion (30-min waist-level immersion in 42.1 ± 0.6°C water). Before, during, and following immersion, brachial and popliteal artery diameter, blood flow, and shear stress were assessed using duplex ultrasound. Lower-limb perfusion was measured also using venous occlusion plethysmography and near-infrared spectroscopy. During immersion, shear rate increased ( < 0.0001) comparably between groups in the popliteal artery (controls: +183 ± 26%; PAD: +258 ± 54%) and brachial artery (controls: +117 ± 24%; PAD: +107 ± 32%). Lower-limb blood flow increased significantly in both groups, as measured from duplex ultrasound (>200%), plethysmography (>100%), and spectroscopy, while central and peripheral pulse-wave velocity decreased in both groups. Mean arterial blood pressure was reduced by 22 ± 9 mmHg (main effect < 0.0001, interaction = 0.60) during immersion, and remained 7 ± 7 mmHg lower 3 h afterward. In PAD, popliteal shear profiles and claudication both compared favorably with those measured immediately following symptom-limited walking. A 30-min hot-water immersion is a practical means of delivering heat therapy to PAD patients and healthy, elderly individuals to induce appreciable systemic (chronotropic and blood pressure lowering) and hemodynamic (upper and lower-limb perfusion and shear rate increases) responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00404.2016 | DOI Listing |
J Appl Physiol (1985)
January 2025
University of Kansas Alzheimerșs Disease Research Center, University of Kansas Medical Center, Fairway, KS, USA.
Impaired glycemic control increases the risk for type 2 diabetes (T2D) and Alzheimer's Disease (AD). Heat therapy (HT), via hot water immersion (HWI), has shown promise in improving shared mechanisms implicated in both T2D and AD, like blood glucose regulation, insulin sensitivity, and inflammation. The potential for HT to improve brain health in individuals at risk for AD has not been examined.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan, ROC.
With increasing energy demands, the need for coating materials with exceptional superhydrophobic properties has grown substantially. However, the widespread use of fluorinated compounds, solvents, and polymer-based synthetic materials has led to heightened levels of microplastics and pollutants. Here, we used a self-curing, solvent-free, and recyclable polyester polyol polymer material combined with (5 and 6.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Rehabilitation Medicine, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-8510, Japan.
Thermotherapy is expected to assist in the prevention of arteriosclerosis and cardiovascular disease in individuals with spinal cord injuries. This study aimed to investigate the impact and underlying mechanisms of whole-body heat stress on cardiac function in patients with cervical spinal cord injury (CSCI) and healthy controls using head-out hot water immersion (HHWI). Eight male patients with complete motor CSCI and nine healthy controls were recruited.
View Article and Find Full Text PDFBMC Sports Sci Med Rehabil
January 2025
Idaho College of Osteopathic Medicine, 1401 E. Central Dr, Meridian, ID, 83642, USA.
Background: "Active" heat acclimation (exercise-in-the-heat) can improve exercise performance but the efficacy of "passive" heat acclimation using post-exercise heat exposure is unclear. Therefore, we synthesised a systematic review and meta-analysis to answer whether post-exercise heat exposure improves exercise performance.
Methods: Five databases were searched to identify studies including: (i) healthy adults; (ii) an exercise training intervention with post-exercise heat exposure via sauna or hot water immersion (treatment group); (iii) a non-heat exposure control group completing the same training; and (iv) outcomes measuring exercise performance in the heat (primary outcome), or performance in thermoneutral conditions, V̇Omax, lactate threshold, economy, heart rate, RPE, core temperature, sweat rate, and thermal sensations.
Appl Physiol Nutr Metab
January 2025
Queensland University of Technology, School of Exercise and Nutrition Sciences, Kelvin Grove, Queensland, Australia;
This study examined the effects of core and muscle temperature on force steadiness and motor unit discharge rate (MUDR) variability after a hot-water immersion session. Fifteen participants (6 women; 25±6 years) completed neuromuscular assessments before and after either 42ºC (hot) or 36ºC (control) water immersion. Force steadiness was measured during knee extension, while HD-sEMG signals were recorded from vastus lateralis and medialis for MUDR variability analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!