Small molecules that bind to RNA potently and specifically are relatively rare. The study of molecules that bind to the HIV-1 transactivation response (TAR) hairpin, a cis-acting HIV genomic element, has long been an important model system for the chemistry of targeting RNA. Here we report the synthesis, biochemical, and structural evaluation of a series of molecules that bind to HIV-1 TAR RNA. A promising analogue, 15, retained the TAR binding affinity of the initial hit and displaced a Tat-derived peptide with an IC of 40 μM. NMR characterization of a soluble analogue, 2, revealed a noncanonical binding mode for this class of compounds. Finally, evaluation of 2 and 15 by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) indicates specificity in binding to TAR within the context of an in vitro-synthesized 365-nt HIV-1 5'-untranslated region (UTR). Thus, these compounds exhibit a novel and specific mode of interaction with TAR, providing important suggestions for RNA ligand design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525537 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.6b01450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!