Aqueous film-forming foams (AFFF) containing poly- and perfluoroalkyl substances (PFAS) used for firefighting have led to the contamination of soil and water at training sites. The unique physicochemical properties of PFAS results in environmental persistency, threatening water quality and making remediation of such sites a necessity. This work investigated the role of sorbent amendment to PFAS contaminated soils in order to immobilise PFAS and reduce mobility and leaching to groundwater. Soil was sampled from a firefighting training facility at a Norwegian airport and total and leachable PFAS concentrations were quantified. Perfluorooctanesulfonic acid (PFOS) was the most dominant PFAS present in all soil samples (between 9 and 2600 μg/kg). Leaching was quantified using a one-step batch test with water (L/S 10). PFOS concentrations measured in leachate water ranged between 1.2 μg/L and 212 μg/L. Sorbent amendment (3%) was tested by adding activated carbon (AC), compost soil and montmorillonite to selected soils. The extent of immobilisation was quantified by measuring PFAS concentrations in leachate before and after amendment. Leaching was reduced between 94 and 99.9% for AC, between 29 and 34% for compost soil and between 28 and 40% for the montmorillonite amended samples. Sorbent + soil/water partitioning coefficients (K) were estimated following amendment and were around 8 L/kg for compost soil and montmorillonite amended soil and ranged from 1960 to 16,940 L/kg for AC amended soil. The remediation of AFFF impacted soil via immobilisation of PFAS following sorbent amendment with AC is promising as part of an overall remediation strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.12.057DOI Listing

Publication Analysis

Top Keywords

sorbent amendment
16
compost soil
12
soil
10
pfas
9
remediation strategy
8
mobility leaching
8
firefighting training
8
training facility
8
pfas concentrations
8
soil montmorillonite
8

Similar Publications

Evaluating sorbents for reducing per- and polyfluoroalkyl substance mobility in biosolids-amended soil columns.

J Environ Qual

January 2025

Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana, USA.

Sustainable reuse of biosolids as fertilizers is being threatened by the presence of per- and polyfluoroalkyl substances (PFAS) in our waste stream warranting research on strategies that will minimize PFAS mobility from land-applied biosolids. Here, we evaluated the ability of waste-derived sorbents aluminum chlorohydrate water treatment residuals (ACH-WTRs, 1 wt%) and biosolids-based biochar (1.5 wt%) to reduce mobility of PFAS in columns with 3 wt% biosolids-amended soils with and without sorbent layered on top of soil only and operated under transient unsaturated conditions.

View Article and Find Full Text PDF

Biochar derived from biomass pyrolysis has proven to be an excellent material for pesticide adsorption and can be used as soil amendment for pesticide non-point pollution. However, the adsorption and desorption mechanisms for certain biochar and pesticide are still unclear. In this study, we investigated the properties of biochar derived from walnut (Juglans regia L.

View Article and Find Full Text PDF

Chlorophyll-Amended Organoclays for the Detoxification of Ochratoxin A.

Toxins (Basel)

November 2024

Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA.

Article Synopsis
  • Climate change contributes to mycotoxicosis outbreaks by creating conditions for droughts and increased fungal growth, leading to higher mycotoxin exposure.
  • A promising detoxification method involves using clay-based materials that can bind mycotoxins in the gastrointestinal tract, reducing their absorption and toxicity.
  • The study found that chlorophyll-amended montmorillonite clay (CMCH) effectively binds and detoxifies ochratoxin A (OTA), outperforming other sorbents, and demonstrated significant toxicity reduction in organisms exposed to OTA.
View Article and Find Full Text PDF

Graphene-based nanomaterials have been proved to be robust sorbents for efficient removal of environmental contaminants including arsenic (As). Biobased graphene oxide (bGO-P) derived from sugarcane bagasse via pyrolysis, GO-C via chemical exfoliation, and magnetite nanoparticles (FeNPs) via green approach using Azadirachta indica leaf extract were synthesized and characterized by Ultraviolet-Visible Spectrophotometer (UV-vis.), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), mean particle size and Scanning electron microscopy (SEM) along with Energy dispersive spectroscopy (EDX) analysis.

View Article and Find Full Text PDF

This study introduces a novel soil conditioning approach using humic substances (HSs) and nutrients co-recovered from reject water from sewage sludge anaerobic digestion. For the first time, HSs and nutrients were simultaneously recovered through sorption on low-cost, environmentally inert materials: natural rock opoka (OP) and waste autoclaved aerated concrete (WAAC). This innovative application of OP and WAAC as carriers and delivery agents for soil-relevant substances offers potential for resource recovery and soil conditioning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!