Background: Therapeutic hypothermia (HT) is the only intervention that improves outcomes in neonatal hypoxic-ischemic encephalopathy (HIE). However, the multifactorial mechanisms by which HT impacts HIE are incompletely understood. The complement system plays a major role in the pathogenesis of ischemia-reperfusion injuries such as HIE. We have previously demonstrated that HT modulates complement activity in vitro.
Methods: Term equivalent rat pups were subjected to unilateral carotid ligation followed by hypoxia (8% O2) for 45 min to simulate HIE. A subset of animals was subjected to HT (31-32°C for 6 h). Plasma and brain levels of C3a and C5a were measured. Receptors for C3a (C3aR) and C5a (C5aR) along with C1q, C3, and C9 were characterized in neurons, astrocytes, and microglia.
Results: We found that HT increased systemic expression of C3a and decreased expression of C5a after HIE. In the brain, C3aR and C5aR are predominantly expressed on microglia after HIE. HT increased local expression of C3aR and decreased expression on C5aR after HIE. Furthermore, HT decreased local expression of C1q, C3-products, and C9 in the brain.
Conclusion: HT is associated with significant alteration of complement effectors and their cognate receptors. Complement modulation may improve outcomes in neonatal HIE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/pr.2016.271 | DOI Listing |
Adv Neonatal Care
January 2025
Author Affiliations: Neonatal Intensive Care Unit, Seattle Children's Hospital, Seattle, WA (Mrs LaBella, Ms Kelly, Mrs Carlin, and Dr Walsh); and Seattle Children's Research Institute, Seattle, WA (Mrs Carlin and Dr Walsh).
Background: Finding an accurate and simple method of thermometry in the neonatal intensive care unit is important. The temporal artery thermometer (TAT) has been recommended for all ages by the manufacturer; however, there is insufficient evidence for the use of TAT in infants, especially to detect hypothermia.
Purpose: To assess the accuracy of the TAT in hypothermic neonates in comparison to a rectal thermometer.
Pediatr Cardiol
January 2025
Echocardiography Laboratory, Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil.
This study aimed to evaluate the hemodynamic and ventricular performance of neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia using conventional and advanced echocardiographic techniques. This observational, prospective study included 22 neonates with HIE matched with 22 healthy neonates. Echocardiographic studies were performed 24 h after achieving target temperature during hypothermia and 24 h after rewarming.
View Article and Find Full Text PDFJ Neurotrauma
January 2025
Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, and Inserm, U1216, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France.
The effect of sex in outcomes after severe traumatic brain injury (TBI) remains uncertain. We explored whether outcomes differed between women and men after standardized care management during the first 5 days in the intensive care unit (ICU). This study was an observational analysis of the OXY-TC multicenter randomized clinical trial between June 15, 2016 and April 17, 2021.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland.
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
To investigate the neuroprotective mechanism of mild hypothermia (MH) in ameliorating cerebral ischemia reperfusion (IR) injury. The Pulsinelli's four-vessel ligation method was utilized to establish a rat model of global cerebral IR injury. To investigate the role of S100A8 in MH treatment of cerebral IR injury, hippocampus-specific S100A8 loss or gain of function was achieved using an adeno-associated virus system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!