Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gait assessment is frequently used as an outcome measure to determine changes in an individual's mobility and disease processes. Inertial measurement units (IMUs) are quickly becoming commonplace in gait analysis. The purpose of this study was to determine and compare the validity of shank and lumbar IMU mounting locations in the estimation of temporal gait features. Thirty-seven adults performed 20 walking trials each over a gold standard force platform while wearing shank and lumbar-mounted IMUs. Data from the IMUs were used to estimate step times using previously published algorithms and were compared with those derived from the force platform. There was an excellent level of correlation between the force platform and shank (r=0.95) and lumbar-mounted (r=0.99) IMUs. Bland-Altman analysis demonstrated high levels of agreement between the IMU and the force platform step times. Confidence interval widths were 0.0782 s for the shank and 0.0367 s for the lumbar. Both IMU mounting locations provided accurate step time estimations, with the lumbar demonstrating a marginally superior level of agreement with the force platform. This validation indicates that the IMU system is capable of providing step time estimates within 2% of the gold standard force platform measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/bmt-2016-0120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!