The impact of short-term UV-B treatment on the content of individual flavonoids and photosynthetic pigments in cotyledons and the growth of common buckwheat (Fagopyrum esculentum Moench) seedlings was investigated. Seeds of four common buckwheat cultivars were germinated in darkness over a period of 4 days and acclimatized for 2 days under a 16/8 h light/dark photoperiod at 24/18 °C day/night, and exposure to 100-120 μmol ∙ m ∙ s of photosynthetically active radiation (PAR). Seedlings were divided into three batches, including two batches subjected to different doses of UV-B (5 W ∙ m and 10 W ∙ m, one hour per day) for 5 days, and a control group exposed to PAR only. Exposure to UV-B increased anthocyanin levels in the cotyledons of all examined cultivars, it inhibited hypocotyl elongation, but did not affect the content of photosynthetic pigments. Flavone concentrations increased in cv. Red Corolla and Kora, remained constant in cv. Panda and decreased in cv. Hruszowska. Exposure to UV-B decreased rutin levels in cv. Hruszowska, but not in the remaining cultivars. Cultivars Hruszowska, Panda and Kora appeared to be less resistant to UV-B than Red Corolla. Higher resistance to UV-B radiation in Red Corolla can probably be attributed to its higher content of anthocyanins and rutin in comparison with the remaining cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1556/018.67.2016.4.6DOI Listing

Publication Analysis

Top Keywords

common buckwheat
12
red corolla
12
uv-b radiation
8
anthocyanin levels
8
levels cotyledons
8
growth common
8
photosynthetic pigments
8
∙ ∙
8
exposure uv-b
8
remaining cultivars
8

Similar Publications

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.

Methods: This experiment was conducted in 7 L pots under laboratory conditions.

View Article and Find Full Text PDF

, commonly referred to as tartary buckwheat, is a cultivated medicinal and edible crop renowned for its economic and nutritional significance. Following the publication of the buckwheat genome, research on its functional genomics across various growth environments has gradually begun. Auxin plays a crucial role in many life processes.

View Article and Find Full Text PDF

Background: Due to the totipotency of plant cells, which allows them to reprogram from a differentiated to a dedifferentiated state, plants exhibit a remarkable regenerative capacity, including under in vitro culture conditions. When exposed to plant hormones, primarily auxins and cytokinins, explant cells cultured in vitro can undergo differentiation through callus formation. Protoplast culture serves as a valuable research model for studying these processes in detail.

View Article and Find Full Text PDF

Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes.

Plant Foods Hum Nutr

January 2025

UNCPBA, Facultad de Ingeniería, Departamento de Ingeniería Química y Tecnología de los Alimentos, TECSE, Olavarría, Buenos Aires, Argentina.

The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!