AI Article Synopsis

  • Research has typically focused on early warning indicators for time-based changes, overlooking their potential use for identifying spatial patterns in ecological contexts.
  • Traditional ecoregion maps, which usually rely on potential vegetation, often miss ongoing changes influenced by factors like climate change and land use.
  • The study demonstrates that using Fisher information on animal data reveals ecological boundaries more accurately than conventional methods, indicating that defining spatial regimes based on animal communities may align better with the realities of rapidly changing ecosystems.

Article Abstract

Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141036PMC
http://dx.doi.org/10.1111/ele.12709DOI Listing

Publication Analysis

Top Keywords

spatial regimes
16
ecoregion maps
12
detecting spatial
8
early warning
8
warning indicators
8
animal communities
8
terrestrial aquatic
8
spatial
5
regimes
4
regimes ecosystems
4

Similar Publications

Controls of the Nucleation Rate and Advection Rate on Barite Precipitation in Fractured Porous Media.

Langmuir

January 2025

State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.

Mineral precipitation is ubiquitous in natural and engineered environments, such as carbon mineralization, contaminant remediation, and oil recovery in unconventional reservoirs. The precipitation process continuously alters the medium permeability, thereby influencing fluid transport and subsequent reaction kinetics. The diversity of preferential precipitation zones controls flow and transport efficiency as well as the capacity of mineral sequestration and immobilization.

View Article and Find Full Text PDF

Canopy flows occur when a moving fluid encounters a matrix of free-standing obstacles and are found in diverse systems, from forests and marine ecology to urban landscapes and biology (e.g. cilia arrays).

View Article and Find Full Text PDF

Deep-blur: Blind identification and deblurring with convolutional neural networks.

Biol Imaging

November 2024

Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France.

We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators.

View Article and Find Full Text PDF

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.

View Article and Find Full Text PDF

Critical loads (CLs) are frequently used to quantify terrestrial ecosystem impacts from nitrogen (N) deposition using ecological responses such as the growth and mortality of tree species. Typically, CLs are reported as a single value, with uncertainty, for an indicator across a species' entire range. Mediating factors such as climate and soil conditions can influence species' sensitivity to N, but the magnitudes of these effects are rarely calculated explicitly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!