Menghai rhabdovirus (MRV) was isolated from Aedes albopictus in Menghai county of Yunnan Province, China, in August 2010. Whole-genome sequencing of MRV was performed using an Ion PGM™ Sequencer. We found that MRV is a single-stranded, negative-sense RNA virus. The complete genome of MRV has 10,744 nt, with short inverted repeat termini, encoding five typical rhabdovirus proteins (N, P, M, G, and L) and an additional small hypothetical protein. Nucleotide BLAST analysis using the BLASTn method showed that the genome sequence most similar to that of MRV is that of Arboretum virus (NC_025393.1), with a Max score of 322, query coverage of 14%, and 66% identity. Genomic and phylogenetic analyses both demonstrated that MRV should be considered a member of a novel species of the family Rhabdoviridae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-016-3188-xDOI Listing

Publication Analysis

Top Keywords

complete genome
8
genome sequence
8
menghai rhabdovirus
8
mrv
6
sequence menghai
4
rhabdovirus
4
rhabdovirus novel
4
novel mosquito-borne
4
mosquito-borne rhabdovirus
4
rhabdovirus china
4

Similar Publications

Objectives: The effects of acute physical exercise in patients with resistant hypertension remain largely unexplored compared with hypertensive patients in general. We assessed the short-term effects of acute moderate-intensity (MICE) and high-intensity interval exercise (HIIE) on the clinic (BP) and 24-h ambulatory blood pressure (ABP) of patients with resistant hypertension.

Methods: Using a crossover randomized controlled design, 10 participants (56 ± 7 years) with resistant hypertension performed three experimental sessions: MICE, HIIE, and control.

View Article and Find Full Text PDF

Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).

View Article and Find Full Text PDF

Differential genes expression of immune tolerance induction in hemophilia A: an exploratory RNA-seq test from a Chinese hemophilia comprehensive care centre.

Transl Pediatr

December 2024

Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

Background: The production of inhibitors is a serious complication that can arise during coagulation factor replacement therapy for hemophilia A (HA). The primary therapeutic strategy to eliminate inhibitors is immune tolerance induction (ITI), which is known to be an extremely challenging, prolonged, and costly treatment. With the widespread use of RNA sequencing (RNA-seq) to analyze differentially expressed genes (DEGs) across various treatment outcomes, there is potential for predicting ITI outcomes.

View Article and Find Full Text PDF

Background: Luminal B breast cancer is routinely treated with chemotherapy and endocrine therapy. However, its sensitivity to treatment remains heterogeneous; therefore, identifying patients who may most benefit remains crucial. Immune-related genes are reportedly related to the prognosis of breast cancer.

View Article and Find Full Text PDF

Background: Infertility is a special reproductive health defect. For women, congenital uterine malformations, extensive adhesions in the uterine cavity, and hysterectomy are associated with infertility. Uterine transplantation is technically feasible, but its clinical application and development are limited by donor shortages and immune rejection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!