Tumor growth relies on oxygen and blood supply depending on neo-vascularization. This process is mediated by the Vascular Endothelial Growth Factor (VEGF) in many tumors. This paradigm has led to the development of specific therapeutic approaches targeting VEGF or its receptors. Despite their promising effects, these strategies have not improved overall survival of patients suffering from different cancers compared to standard therapies. We hypothesized that the existence of anti-angiogenic forms of VEGF VEGFxxxb which are still present in many tumors limit the therapeutic effects of the anti-VEGF antibodies bevacizumab/Avastin (BVZ). To test this hypothesis, we generated renal cell carcinoma cells (RCC) expressing VEGF165b. The incidence of tumors xenografts generated in nude mice and their growth were inferior to those obtained with control cells. Whereas BVZ had no effect on control tumors, it slowed-down the growth of tumor generated with VEGF165b expressing cells. A prophylactic immunization against the domain discriminating VEGF from VEGFxxxb isoforms inhibited the growth of tumor generated with two different syngenic tumor cell lines (melanoma (B16 cells) and RCC (RENCA cells)). Purified immunoglobulins from immunized mice also slowed-down tumor growth of human RCC xenografts in nude mice, producing a potent effect compared to BVZ in this model. Furthermore, down-regulating the serine-arginine-rich splicing factor 1 (SRSF1) or masking SRSF1 binding sites by 2'O-Methyl RNA resulted in the increase of the VEGFxxxb/VEGF ratio. Therefore, a vaccine approach, specific antibodies against pro-angiogenic forms of VEGF, or increasing the VEGFxxxb/VEGF ratio may represent new prophylactic or pro-active anti-cancer strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354723PMC
http://dx.doi.org/10.18632/oncotarget.13942DOI Listing

Publication Analysis

Top Keywords

forms vegf
12
pro-angiogenic forms
8
anti-cancer strategies
8
tumor growth
8
vegf vegfxxxb
8
cells rcc
8
nude mice
8
growth tumor
8
tumor generated
8
vegfxxxb/vegf ratio
8

Similar Publications

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Silencing of FZD7 Inhibits Endometriotic Cell Viability, Migration, and Angiogenesis by Promoting Ferroptosis.

Cell Biochem Biophys

January 2025

Department of Obstetrics and Gynecology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China.

Background: Endometriosis (EMS) is a difficult gynecological disease to cure. Frizzled-7 (FZD7) has been shown to be associated with the development of EMS, but its specific mechanism remains unclarified. This study aims to explore the role of FZD7 in EMS.

View Article and Find Full Text PDF

It was assumed that only autogenous bone had appropriate osteoconductive and osteoindutive properties for bone regeneration, but this assumption has been challenged. Many studies have shown that synthetic biomaterials must be considered as the best choice for guided bone regeneration. The objective of this work is to compare the performances of nanohydroxyapatite/β-tricalcium phosphate (n-HA/β-TCP) composite and autogenous bone grafting in bone regeneration applications.

View Article and Find Full Text PDF

Supramolecular Engineering of Nanoceria for Management and Amelioration of Age-Related Macular Degeneration via the Two-Level Blocking of Oxidative Stress and Inflammation.

Adv Sci (Weinh)

January 2025

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.

Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction.

View Article and Find Full Text PDF

Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!