Heparanase, a protein with enzymatic and nonenzymatic properties, contributes toward disease progression and prevention. In the current study, a fortuitous observation in transgenic mice globally overexpressing heparanase (hep-tg) was the discovery of improved glucose homeostasis. We examined the mechanisms that contribute toward this improved glucose metabolism. Heparanase overexpression was associated with enhanced glucose-stimulated insulin secretion and hyperglucagonemia, in addition to changes in islet composition and structure. Strikingly, the pancreatic islet transcriptome was greatly altered in hep-tg mice, with >2,000 genes differentially expressed versus control. The upregulated genes were enriched for diverse functions including cell death regulation, extracellular matrix component synthesis, and pancreatic hormone production. The downregulated genes were tightly linked to regulation of the cell cycle. In response to multiple low-dose streptozotocin (STZ), hep-tg animals developed less severe hyperglycemia compared with wild-type, an effect likely related to their β-cells being more functionally efficient. In animals given a single high dose of STZ causing severe and rapid development of hyperglycemia related to the catastrophic loss of insulin, hep-tg mice continued to have significantly lower blood glucose. In these mice, protective pathways were uncovered for managing hyperglycemia and include augmentation of fibroblast growth factor 21 and glucagon-like peptide 1. This study uncovers the opportunity to use properties of heparanase in management of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db16-0761DOI Listing

Publication Analysis

Top Keywords

heparanase overexpression
8
improved glucose
8
hep-tg mice
8
heparanase
5
overexpression induces
4
induces glucagon
4
glucagon resistance
4
resistance protects
4
protects animals
4
animals chemically
4

Similar Publications

Little attention was given to heparanase 2 (Hpa2) over the last two decades, possibly because it lacks a heparan sulfate (HS)-degrading activity typical of heparanase. Emerging results suggest, nonetheless, that Hpa2 plays a role in human pathologies, including cancer progression where it functions as a tumor suppressor. Here, we examined the role of Hpa2 in cervical carcinoma.

View Article and Find Full Text PDF
Article Synopsis
  • Acute pancreatitis (AP) is a serious gastrointestinal condition with high risks but unclear causes and treatment options; recent research shows heparanase (Hpa) plays a negative role in AP progression.
  • The study explored the combined effects of Aspirin, Trehalose, and specific Hpa inhibitors (PG545 and SST0001) on AP in a mouse model, finding significant improvements when these drugs were used together.
  • A new compound, Aspirlose, was also discovered to effectively combat AP, indicating that targeting Hpa with these drug combinations could offer promising new treatments for this challenging condition.
View Article and Find Full Text PDF

Tellurium is a rare element, and ammonium trichloro (dioxoethylene-o,o') tellurate (AS101) is the most bioactive molecule among several synthetic tellurium compounds. AS101 was found to be immunomodulatory and can modulate types of cytokines. However, the effect of AS101 on tumor metastasis remains unclear.

View Article and Find Full Text PDF

Design Principle of Heparanase Inhibitors: A Combined In Vitro and In Silico Study.

ACS Med Chem Lett

July 2024

Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States.

Heparanase (HPSE) is an enzyme that cleaves heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs). Overexpression of HPSE is associated with various types of cancer, inflammation, and immune disorders, making it a highly promising therapeutic target. Previously developed HPSE inhibitors that have advanced to clinical trials are polysaccharide-derived compounds or their mimetics; however, these molecules tend to suffer from poor bioavailability, side effects via targeting other saccharide binding proteins, and heterogeneity.

View Article and Find Full Text PDF

In addition to controlling smooth muscle tone in coronary vessels, endothelial cells also influence subjacent cardiomyocyte growth. Because heparanase, with exclusive expression in endothelial cells, enables extracellular matrix remodeling, angiogenesis, metabolic reprogramming, and cell survival, it is conceivable that it could also encourage development of cardiac hypertrophy. Global heparanase overexpression resulted in physiologic cardiac hypertrophy, likely an outcome of HSPG clustering and activation of hypertrophic signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!