Extracts of Arnica spp. are traditionally used due to their anti-inflammatory effects for the topical treatment of e.g. haematoma or muscle distortions. One of the main active compounds is Helenalin, a sesquiterpene lactone that can be found in various Asteraceae. However, immunotoxic effects of the compound are only poorly analysed. In this study, a 2D gel electrophoresis based proteomic approach together with a membrane based proteomic assay, metabolomics and the detection of intracellular reactive oxygen species (iROS) were used to investigate potential immunotoxic properties of Helenalin on the human immune cell lines Jurkat and THP-1 and on human peripheral blood mononuclear cells (PBMC). The study revealed a dose-dependent cytotoxicity towards both tested cell lines and the PBMC. However, the cell lines were less sensitive to the Helenalin treatment than the PBMC. The proteomic assays showed strong effects on the carbohydrate metabolism and the protein folding in THP-1 cells but only weak impact on Jurkat cells. Metabolomic studies as well as iROS detection in THP-1 cells verified the results of the proteomic analysis. In summary, the approaches used in this study were able to identify target pathways of Helenalin especially in THP-1 monocytes and thus enable a risk assessment of the substance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2016.12.010 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a second-line treatment with curative potential for leukemia patients. However, the prognosis of allo-HSCT patients with disease relapse or graft-versus-host disease (GvHD) is poor. CD4 or CD8 conventional T (Tconv) cells are critically involved in mediating anti-leukemic immune responses to prevent relapse and detrimental GvHD.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).
Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.
Cell Commun Signal
January 2025
Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.
FLT3 mutations occur in approximately 25% of all acute myeloid leukemia (AML) patients. While several FLT3 inhibitors have received FDA approval, their use is currently limited to combination therapies with chemotherapy, as resistance occurs, and efficacy decreases when the inhibitors are used alone. Given the highly heterogeneous nature of AML, there is an urgent need for novel targeted therapies that address the disease from multiple angles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!