Fermented foods and beverages were among the first processed food products consumed by humans. The production of foods such as yogurt and cultured milk, wine and beer, sauerkraut and kimchi, and fermented sausage were initially valued because of their improved shelf life, safety, and organoleptic properties. It is increasingly understood that fermented foods can also have enhanced nutritional and functional properties due to transformation of substrates and formation of bioactive or bioavailable end-products. Many fermented foods also contain living microorganisms of which some are genetically similar to strains used as probiotics. Although only a limited number of clinical studies on fermented foods have been performed, there is evidence that these foods provide health benefits well-beyond the starting food materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2016.11.010 | DOI Listing |
BMC Microbiol
January 2025
Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China.
Objective: Wet distiller's grains (WDG) are rich in crude protein, yet challenging to preserve. Nevertheless, incorporating WDG into total mixed ration (TMR) silage holds promise for enhancing fermentation quality. This study investigated the effects of varying WDG proportions on nitrogen composition, fermentation quality, and microorganisms in TMR silage.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye.
Traditional Turkish fermented foods like boza, pickles, and tarhana are recognized for their nutritional and health benefits, yet the probiotic potential of lactic acid bacteria (LAB) strains isolated from them remains underexplored. Sixty-six LAB strains were isolated from fermented foods using bacterial morphology, Gram staining, and catalase activity. The isolates were differentiated at strain level by RAPD-PCR (Random Amplification of Polymorphic DNA-Polymerase Chain Reaction) and twenty-five strains were selected for further evaluation of acid and bile salt tolerance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Agriculture, Henan University, Kaifeng 475004, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore; Food Laboratory of Zhongyuan, Luohe 462000, China. Electronic address:
This study explores the impact of multi-species co-fermentation on the thermal properties of wheat starch, emphasizing the innovative use of fish collagen as an additive. The effects of adding different levels of fish collagen (0 %, 3 %, 6 %, 9 %, 12 %, and 15 %) on the thermal properties of starch were investigated during co-fermentation with Lactobacillus plantarum and Saccharomyces cerevisiae. Utilizing analytical techniques such as X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), we observed a significant increase in the degree of order from 1.
View Article and Find Full Text PDFJ Food Sci
January 2025
Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.
Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense, Spain.
This work aimed to study the production, for the first time, of three fermented products of chestnut puree (CP) with milk kefir grains, a higher nisin-producing (Lactococcus (L.) lactis CECT 539) and a higher lactic acid-producing (Lactobacillus (Lb.) casei CECT 4043) lactic acid bacteria (LAB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!