CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner.

Mol Cell Neurosci

Department of Molecular Physiology & Biophysics, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, 37232-0615, United States.

Published: March 2017

Some forms of long-term synaptic plasticity require docking of Ca/calmodulin-dependent protein kinase II α (CaMKIIα) to residues 1290-1309 within the intracellular C-terminal tail of the N-methyl-d-aspartate (NMDA) receptor GluN2B subunit. The phosphorylation of Ser1303 within this region destabilizes CaMKII binding. Interestingly, Ser1303 is a substrate for CaMKII itself, as well as PKC and DAPK1, but these kinases have been reported to have contradictory effects on the activity of GluN2B-containing NMDA receptors. Here, we re-assessed the effect of CaMKII on NMDA receptor desensitization in heterologous cells, as measured by the ratio of steady-state to peak currents induced during 3s agonist applications. CaMKIIα co-expression or infusion of constitutively active CaMKII limits the extent of desensitization and preserves current amplitude with repeated stimulation of recombinant GluN1A/GluN2B when examined using low intracellular chloride (Cl) levels, characteristic of neurons beyond the first postnatal week. In contrast, CaMKIIα enhances the acute rate and extent of desensitization when intracellular Cl concentrations are high. The apparent dependence of CaMKIIα effects on NMDA receptor desensitization on Cl concentrations is consistent with the presence of a Ca-activated Cl conductance endogenous to HEK 293 cells, which was confirmed by photolysis of caged-Ca. However, Ca-activated Cl conductances are unaffected by CaMKIIα expression, indicating that CaMKII affects agonist-induced whole cell currents via modulation of the NMDA receptor. In support of this idea, CaMKIIα modulation of GluN2B-NMDA receptors is abrogated by the phospho-null mutation of Ser1303 in GluN2B to alanine and occluded by phospho-mimetic mutation of Ser1303 to aspartate regardless of intracellular Cl concentration. Thus, CaMKII-mediated phosphorylation of GluN2B-containing NMDA receptors reduces desensitization at physiological (low) intracellular Cl, perhaps serving as a feed-forward mechanism to sustain NMDA-mediated Ca entry and continued CaMKII activation during learning and memory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315591PMC
http://dx.doi.org/10.1016/j.mcn.2016.12.002DOI Listing

Publication Analysis

Top Keywords

nmda receptor
20
camkii-mediated phosphorylation
8
glun2b-containing nmda
8
nmda receptors
8
receptor desensitization
8
extent desensitization
8
low intracellular
8
mutation ser1303
8
nmda
7
camkiiα
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!