Seasonal and Morphological Variations of Brown Trout (Salmo trutta f. fario) Kidney Peroxisomes: A Stereological Study.

Microsc Microanal

2Department of Microscopy,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto),Porto 4099-003,Portugal.

Published: December 2016

Literature about fish kidney peroxisomes is scarce. To tackle this caveat, a stereological approach on renal peroxisome morphological parameters was performed for the first time in a fish, establishing correlations with maturation stages as it was previously done in brown trout liver. Three-year-old brown trout males and females were collected at the major seasons of their reproductive cycle. Trunk kidney was fixed and processed for catalase cytochemistry. Classical stereological methods were applied to electromicrographs to quantitate morphological parameters. Different seasonal variation patterns were observed between genders, and between renal proximal tubule segments I and II. In males, peroxisomes from proximal tubule segment II had a relatively higher volume and number in May, being individually bigger in February. Females presented similar trends, though with less marked variations. Overall, males and females did not show exactly the same seasonal patterns for most peroxisomal parameters, and no correlations were found between the latter and the gonado-somatic index (GSI). Hence, and despite the variations, the morphology of renal peroxisomes is not strictly correlated with gonad maturation kinetics, therefore suggesting that kidney peroxisome morphology is not seasonally modulated by sex steroids, like estradiol, as it seems to happen in liver peroxisomes.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927616011995DOI Listing

Publication Analysis

Top Keywords

brown trout
12
kidney peroxisomes
8
morphological parameters
8
males females
8
proximal tubule
8
peroxisomes
5
seasonal morphological
4
morphological variations
4
variations brown
4
trout salmo
4

Similar Publications

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

Offspring of adult Yellowstone cutthroat trout (YCT) exposed to a range of selenium (Se) concentrations in situ were reared in a laboratory setting to assess effects on survival, growth and abnormalities. Maternal whole body Se concentrations ranged from 2.6 to 25.

View Article and Find Full Text PDF

Vibriosis caused by Vibrio anguillarum has been an important bacterial disease in cultured rainbow trout (Oncorhynchus mykiss). In the present study, we evaluated the protective efficacy of a vaccine that consists of formalin-killed (FK) V. anguillarum and the alr genes knockout auxotrophic-live (AL) V.

View Article and Find Full Text PDF

Purpose: T1-weighted signal intensity ratios (SIR) comparing pancreas to spleen (SIRps) or muscle (SIRpm) can semiquantitatively assess T1 signal change associated with pancreatitis. However, there is no standardized methodology for generating these ratios. We set out to determine the impact of MRI sequence as well as region of interest (ROI) location, shape, and size on T1 SIR.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!