Background: Although next generation sequencing (NGS) offers the potential for studying virus populations in unprecedented depth, PCR error, amplification bias and recombination during library construction have limited its use to population sequencing and measurements of unlinked allele frequencies. Here we report a method, termed ultrasensitive Single-Genome Sequencing (uSGS), for NGS library construction and analysis that eliminates PCR errors and recombinants, and generates single-genome sequences of the same quality as the "gold-standard" of HIV-1 single-genome sequencing assay but with more than 100-fold greater depth.

Results: Primer ID tagged cDNA was synthesized from mixtures of cloned BH10 wild-type and mutant HIV-1 transcripts containing ten drug resistance mutations. First, the resultant cDNA was divided and NGS libraries were generated in parallel using two methods: uSGS and a method applying long PCR primers to attach the NGS adaptors (LP-PCR-1). Second, cDNA was divided and NGS libraries were generated in parallel comparing 3 methods: uSGS and 2 methods adapted from more recent reports using variations of the long PCR primers to attach the adaptors (LP-PCR-2 and LP-PCR-3). Consistently, the uSGS method amplified a greater proportion of cDNAs, averaging 30% compared to 13% for LP-PCR-1, 21% for LP-PCR-2 and 14% for LP-PCR-3. Most importantly, when the uSGS sequences were binned according to their primer IDs, 94% of the bins did not contain PCR recombinant sequences versus only 55, 75 and 65% for LP-PCR-1, 2 and 3, respectively. Finally, when uSGS was applied to plasma samples from HIV-1 infected donors, both frequent and rare variants were detected in each sample and neighbor-joining trees revealed clusters of genomes driven by the linkage of these mutations, showing the lack of PCR recombinants in the datasets.

Conclusions: The uSGS assay can be used for accurate detection of rare variants and for identifying linkage of rare alleles associated with HIV-1 drug resistance. In addition, the method allows accurate in-depth analyses of the complex genetic relationships of viral populations in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175307PMC
http://dx.doi.org/10.1186/s12977-016-0321-6DOI Listing

Publication Analysis

Top Keywords

single-genome sequencing
12
ultrasensitive single-genome
8
generation sequencing
8
library construction
8
drug resistance
8
cdna divided
8
divided ngs
8
ngs libraries
8
libraries generated
8
generated parallel
8

Similar Publications

Hypermutated proviruses, which arise in a single Human Immunodeficiency Virus (HIV) replication cycle when host antiviral APOBEC3 proteins introduce extensive guanine to adenine mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). However, hypermutated sequences are routinely excluded from phylogenetic trees because their extensive mutations complicate phylogenetic inference, and as a result, we know relatively little about their within-host evolutionary origins and dynamics. Using >1400 longitudinal single-genome-amplified HIV sequences isolated from six women over a median of 18 years of follow-up-including plasma HIV RNA sequences collected over a median of 9 years between seroconversion and ART initiation, and >500 proviruses isolated over a median of 9 years on ART-we evaluated three approaches for masking hypermutation in nucleotide alignments.

View Article and Find Full Text PDF

HIV-1 reservoir cells persist indefinitely during suppressive antiretroviral therapy (ART) in individuals who acquire infection in adulthood, but little is known about the longitudinal evolution of viral reservoir cells during long-term ART started during early infancy. We studied 2 fraternal twins who acquired HIV-1 perinatally, started ART at week 10 after birth and remained on ART for 28 years. We observed that the frequency of genome-intact proviruses, determined by single-genome near-full-length proviral sequencing, declined by approximately 4,000- to 13,000-fold during this period, indicating enhanced decay rates of intact proviruses even after adjusting for dilution effects from somatic growth.

View Article and Find Full Text PDF
Article Synopsis
  • Triatomines, known for spreading Chagas disease via the Trypanosoma cruzi parasite, are gaining attention as possible vectors for other viruses due to climate changes and urban adaptations.
  • This study analyzed 122 wild and lab-kissed bugs from various countries, identifying six viruses, including Triatoma virus, in nearly half the samples.
  • Notably, the research expands genomic resources for the Triatoma virus and reports two new viruses, showcasing the effectiveness of using transcriptome data to find new viruses in insect vectors.
View Article and Find Full Text PDF

Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance.

View Article and Find Full Text PDF

Genome-resolved insights into the structure and function of the drinking water microbiome can advance the effective management of drinking water quality. To enable this, we constructed and curated thousands of metagenome-assembled and isolate genomes from drinking water distribution systems globally to develop a Drinking Water Genome Catalog (DWGC). The current DWGC disproportionately represents disinfected drinking water systems due to a paucity of metagenomes from nondisinfected systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!