A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A genotypic method for determining HIV-2 coreceptor usage enables epidemiological studies and clinical decision support. | LitMetric

AI Article Synopsis

  • CCR5-coreceptor antagonists are important for treating HIV-2, but it's crucial to determine whether the virus can only use the CCR5 coreceptor to avoid treatment failure.
  • A new online tool, geno2pheno[coreceptor-hiv2], was created to predict HIV-2 coreceptor usage based on the V3 loop of the virus's glycoprotein, achieving high accuracy in distinguishing coreceptor types.
  • This tool not only matched existing methods in predictive performance but also identified new markers for CXCR4 usage, enhancing the understanding of HIV-2 coreceptor dynamics.

Article Abstract

Background: CCR5-coreceptor antagonists can be used for treating HIV-2 infected individuals. Before initiating treatment with coreceptor antagonists, viral coreceptor usage should be determined to ensure that the virus can use only the CCR5 coreceptor (R5) and cannot evade the drug by using the CXCR4 coreceptor (X4-capable). However, until now, no online tool for the genotypic identification of HIV-2 coreceptor usage had been available. Furthermore, there is a lack of knowledge on the determinants of HIV-2 coreceptor usage. Therefore, we developed a data-driven web service for the prediction of HIV-2 coreceptor usage from the V3 loop of the HIV-2 glycoprotein and used the tool to identify novel discriminatory features of X4-capable variants.

Results: Using 10 runs of tenfold cross validation, we selected a linear support vector machine (SVM) as the model for geno2pheno[coreceptor-hiv2], because it outperformed the other SVMs with an area under the ROC curve (AUC) of 0.95. We found that SVMs were highly accurate in identifying HIV-2 coreceptor usage, attaining sensitivities of 73.5% and specificities of 96% during tenfold nested cross validation. The predictive performance of SVMs was not significantly different (p value 0.37) from an existing rules-based approach. Moreover, geno2pheno[coreceptor-hiv2] achieved a predictive accuracy of 100% and outperformed the existing approach on an independent data set containing nine new isolates with corresponding phenotypic measurements of coreceptor usage. geno2pheno[coreceptor-hiv2] could not only reproduce the established markers of CXCR4-usage, but also revealed novel markers: the substitutions 27K, 15G, and 8S were significantly predictive of CXCR4 usage. Furthermore, SVMs trained on the amino-acid sequences of the V1 and V2 loops were also quite accurate in predicting coreceptor usage (AUCs of 0.84 and 0.65, respectively).

Conclusions: In this study, we developed geno2pheno[coreceptor-hiv2], the first online tool for the prediction of HIV-2 coreceptor usage from the V3 loop. Using our method, we identified novel amino-acid markers of X4-capable variants in the V3 loop and found that HIV-2 coreceptor usage is also influenced by the V1/V2 region. The tool can aid clinicians in deciding whether coreceptor antagonists such as maraviroc are a treatment option and enables epidemiological studies investigating HIV-2 coreceptor usage. geno2pheno[coreceptor-hiv2] is freely available at http://coreceptor-hiv2.geno2pheno.org .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5168878PMC
http://dx.doi.org/10.1186/s12977-016-0320-7DOI Listing

Publication Analysis

Top Keywords

coreceptor usage
44
hiv-2 coreceptor
32
coreceptor
15
usage
12
hiv-2
10
enables epidemiological
8
epidemiological studies
8
coreceptor antagonists
8
online tool
8
prediction hiv-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!