A modified lyophilization approach is developed and used for highly efficient transformation of 2D graphene oxide sheet into 1D graphene nanoscroll (GNS) with high topological transforming efficiency (∼94%). Because of the unique open tubular structure and large specific surface area (545 m g), GNS is utilized for the first time as a porous cathode scaffold for encapsulating sulfur with a high loading (81 wt %), and also as a conductive skeleton for assembling MnO nanowires into a flexible free-standing hybrid interlayer, both enabling high-rate and long-life Li-S battery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b13455DOI Listing

Publication Analysis

Top Keywords

hybrid interlayer
8
efficient synthesis
4
synthesis graphene
4
graphene nanoscrolls
4
nanoscrolls fabricating
4
fabricating sulfur-loaded
4
sulfur-loaded cathode
4
cathode flexible
4
flexible hybrid
4
interlayer high-performance
4

Similar Publications

Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.

View Article and Find Full Text PDF

Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.

View Article and Find Full Text PDF

Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

The incorporation of photoactive organic dyes into layered inorganic materials enhances their optical and chemical properties, making them ideal for sensing applications. In this study, Bisindolyl methane (BIM)-based neutral probes were integrated with bentonite clay to explore their sensing capabilities. Probe 1 (unoxidized BIM) and Probe 2 (oxidized BIM) generally exhibited quenched luminescence in solution due to intramolecular rotations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!