Phenotype-based screening of diverse compound collections generated by privileged substructure-based diversity-oriented synthesis (pDOS) is considered one of the prominent approaches in the discovery of novel drug leads. However, one key challenge that remains is the development of efficient and modular synthetic routes toward the facile access of privileged small-molecule libraries with skeletal and stereochemical complexity and drug-like properties. In this regard, a novel and diverse one-pot procedure for the diastereoselective synthesis of privileged polycyclic benzopyrans and benzoxepines is described herein. These unexplored chemotypes were accessed by utilizing an acid-mediated diaza-Diels-Alder reaction of 2-allyloxy- and/or homoallyloxy benzaldehyde with 2-aminoazine building blocks. Profiling of representative analogues against blood-stage Plasmodium falciparum parasites identified three lead candidates with low micromolar antimalarial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201605231DOI Listing

Publication Analysis

Top Keywords

intramolecular diaza-diels-alder
4
diaza-diels-alder protocol
4
protocol diastereoselective
4
diastereoselective modular
4
modular one-step
4
one-step synthesis
4
synthesis constrained
4
constrained polycyclic
4
polycyclic frameworks
4
frameworks phenotype-based
4

Similar Publications

Phenotype-based screening of diverse compound collections generated by privileged substructure-based diversity-oriented synthesis (pDOS) is considered one of the prominent approaches in the discovery of novel drug leads. However, one key challenge that remains is the development of efficient and modular synthetic routes toward the facile access of privileged small-molecule libraries with skeletal and stereochemical complexity and drug-like properties. In this regard, a novel and diverse one-pot procedure for the diastereoselective synthesis of privileged polycyclic benzopyrans and benzoxepines is described herein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!