Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Static and dynamic magnetic properties of a [Fe(35 Å)/Gd(50 Å)] superlattice are investigated experimentally in the temperature range 5-295 K using SQUID magnetometery and the ferromagnetic resonance (FMR) technique at frequencies 7-38 GHz. The obtained magnetization curves and FMR spectra are analysed theoretically using numerical simulation on the basis of the effective field model. At every given temperature, both static and resonance experimental data can be approximated well within the proposed model. However, a considerable temperature dependence of the effective field parameter in gadolinium layers has to be taken into account to achieve reasonable agreement with the experimental data in the entire temperature range studied. To describe the peculiarities of experimental FMR spectra, a non-local diffusion-type absorption term in Landau-Lifshitz equations is considered in addition to the Gilbert damping term. Possible reasons for the observed effects are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aa54f1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!