The recent fabrication of liquid crystalline ion gels featuring rigid-rod polyanions aligned within room-temperature ionic liquids (RTILs) opens up exciting new avenues for engineering ion conducting materials. These gels exhibit an unusual combination of properties including high ionic conductivity, distinct transport anisotropy, and widely tunable elastic modulus. Using molecular simulations, we study the structure and dynamics of the ions in an ion gel consisting of rigid-rod polyanions and [Cmim][TfO] RTILs. We show that the ion distribution in the interstitial space between polymer rods exhibits the hallmarks of the RTIL structure near charged surfaces; i.e., cations (Cmim) and anions (TfO) form alternating layers around the polymer rods and the charge on the rod is overscreened by the ionic layer surrounding it. The distinct ordering of ions suggests the formation of a long-range "electrostatic network" in the ion gel, which may contribute to its mechanical cohesion and high modulus. The dynamics of both Cmim and TfO ions slow down due to the fact that some Cmim ions become associated with the sulfonate groups of the polymer rod on nanosecond time scales, which hinders the dynamics of all ions in the gel. Cmim and TfO ion diffusion in the gel are only 2-10 times slower than in bulk RTILs, which is still much faster than, e.g., Li ions in typical ion conducting polymers. This fast ion transport combined with strong mechanical cohesion open up exciting opportunities for application of these gels in electrochemical devices including Li-metal batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b03798 | DOI Listing |
Mikrochim Acta
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China. Electronic address:
To meet the increasing demand for wearable sensor in special environment such as low temperature or underwater, a multifunctional ionic conducting hydrogel (Gel/PSAA-Al hydrogel) with anti-freezing and low swelling for human motion detection and underwater communication was prepared using gelatin (Gel), [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), acrylamide (AAm), acrylic acid (AAc), and AlCl. Due to reversible hydrogen bonding, electrostatic interactions and metal coordination crosslinking between the polymer networks, the resulting Gel/PSAA-Al hydrogels present low swelling property in water and exhibit large tensile properties (~1050 %), high tensile strength (~250 kPa) and excellent fatigue resistance. In addition, the hydration capacity of SBMA and AlCl endows the Gel/PSAA-Al hydrogel fantastic anti-freezing (-31.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:
Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!