Calnuc is a ubiquitously expressed protein of the EF-hand Ca-binding superfamily. Previous studies have implicated it in Ca-sensitive physiological processes, whereas details of its function and involvement in human diseases are lacking. Drawing upon the sequence homology of calnuc with calreticulin, we propose it functions as a molecular chaperone-like protein. In cells under thermal, chemical [urea and guanidinium chloride (GdmCl)], and acidic stress, calnuc exhibits properties similar to those of established chaperone-like proteins (GRP78, spectrin, and α-crystallin), effectively demonstrated by its ability to suppress aggregation of malate dehydrogenase (MDH), alcohol dehydrogenase, and catalase. Calnuc aids in refolding of MDH with retention of 80% of its enzymatic activity. In HEK293 cells subjected to heat shock, calnuc chaperones luciferase, protecting its activity. Our in vitro and cell culture results establish the ability of calnuc to inhibit fibrillation of insulin and lysozyme and validate its neuroprotective role in cells treated with amyloid fibrils. Calnuc also rescues cells from fibrillar toxicity (caused by misfolded or aggregated proteins), providing a plausible explanation for the previous observation of its low level of expression in brains affected by Alzheimer's disease. We propose that calnuc is possibly involved in controlling protein unfolding diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), prion disease, and type II diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.6b00660 | DOI Listing |
Sci Rep
December 2024
University of Jammu, Jammu and Kashmir, 180006, India.
Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.
View Article and Find Full Text PDFBackground: Metabolic syndrome is a prevalent and common health problem and numerous studies have revealed the role of diet and lifestyle change in prevention of metabolic syndrome. However, the novel dietary index, cardioprotective index (CPI) and its association with metabolic syndrome is not investigated yet. In the current study, we evaluated the association between metabolic syndrome and its components, CPI, Nesfatin-1 and Omentin-1in a cross-sectional study.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Communication of gut hormones with the central nervous system is important to regulate systemic glucose homeostasis, but the precise underlying mechanism involved remain little understood. Nesfatin-1, encoded by nucleobindin-2 (NUCB2), a potent anorexigenic peptide hormone, was found to be released from the gastrointestinal tract, but its specific function in this context remains unclear. Herein, we found that gut nesfatin-1 can sense nutrients such as glucose and lipids and subsequently decreases hepatic glucose production.
View Article and Find Full Text PDFJ Ethnopharmacol
February 2025
Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai, 200032, China. Electronic address:
Peptides
December 2024
Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul 01797, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!