Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Levulinic acid (LA) is produced by the catalytic conversion of a variety of woody biomass. To investigate the potential use of desalting electrodialysis (ED) for LA purification, electrodialytic separation of levulinate from both reagent and cedar-derived LA solution (40-160 g L ) was demonstrated. When using reagent LA solution with pH5.0-6.0, the recovery rates of levulinate ranged from 68 to 99%, and the energy consumption for recovery of 1 kg of levulinate ranged from 0.18 to 0.27 kWh kg . With cedar-derived LA solution (pH6.0), good agreement in levulinate recovery (88-99%), and energy consumption (0.18-0.22 kWh kg ) were observed in comparison to the reagent LA solutions, although a longer operation time was required due to some impurities. The application of desalting ED was favorable for promoting microbial utilization of cedar-derived LA. From 0.5 mol L of the ED-concentrated sodium levulinate solution, 95.6% of levulinate was recovered as LA calcium salt dihydrate by crystallization. This is the first report on ED application for LA recovery using more than 20 g L LA solutions (40-160 g L ). © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:448-453, 2017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.2425 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!