Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.

J Chem Theory Comput

Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States.

Published: January 2017

Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals. Particular attention is paid to the reference determinant dependence of RPA. We find that typically the results do not vary much between semilocal or hybrid functionals as a reference, as long as the fraction of exact exchange (EXX) mixing in the hybrid functional is small. For large fractions of EXX mixing, however, the Hartree-Fock-like nature of the determinant can severely degrade the performance. Overall, RPA systematically reduces the errors of semilocal functionals and delivers excellent performance from a single reference determinant for inherently multireference reactions. The behavior of dual hybrids that combine RPA correlation with a hybrid exchange energy was also explored, but ultimately did not lead to a systematic improvement compared to traditional RPA for these systems. We rationalize this conclusion by decomposing the contributions to the reaction energies, and briefly discuss the possible implications for double-hybrid functionals based on RPA. The correlation between EXX mixing and spin-symmetry breaking is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.6b00900DOI Listing

Publication Analysis

Top Keywords

reference determinant
12
semilocal hybrid
12
exx mixing
12
determinant dependence
8
random phase
8
phase approximation
8
transition metal
8
metal chemistry
8
semilocal functionals
8
reaction energies
8

Similar Publications

Background: Few studies have explored the relationship between macronutrient intake and sleep outcomes using daily data from mobile apps.

Objective: This cross-sectional study aimed to examine the associations between macronutrients, dietary components, and sleep parameters, considering their interdependencies.

Methods: We analyzed data from 4825 users of the Pokémon Sleep and Asken smartphone apps, each used for at least 7 days to record objective sleep parameters and dietary components, respectively.

View Article and Find Full Text PDF

Background And Objectives: Mitochondrial disorders are multiorgan disorders resulting in significant morbidity and mortality. We aimed to characterize death-associated factors in an international cohort of deceased individuals with mitochondrial disorders.

Methods: This cross-sectional multicenter observational study used data provided by 26 mitochondrial disease centers from 8 countries from January 2022 to March 2023.

View Article and Find Full Text PDF

The growing sophistication of tumor molecular profiling has helped to slowly transition oncologic care toward a more personalized approach in different tumor types, including in bladder cancer. The National Comprehensive Cancer Network recommends that all patients with stage IVA and stage IVB urothelial carcinoma have molecular analysis that integrates at least testing to help facilitate the selection of future therapeutic options. Sequencing of tumor-derived tissue is the mainstay to obtain this genomic testing, but as in other cancers, there has been extensive research into the integration of liquid biopsies in longitudinal management.

View Article and Find Full Text PDF

Accurately calculating the diradical character () of molecular systems remains a significant challenge due to the scarcity of experimental data and the inherent multireference nature of the electronic structure. In this study, various quantum mechanical approaches, including broken symmetry density functional theory (BS-DFT), spin-flip time-dependent density functional theory (SF-TDDFT), mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT), complete active space self-consistent field (CASSCF), complete active space second-order perturbation theory (CASPT2), and multiconfigurational pair-density functional theory (MCPDFT), are employed to compute the singlet-triplet energy gaps () and values in Thiele, Chichibabin, and Müller analogous diradicals. By systematically comparing the results from these computational methods, we identify optimally tuned long-range corrected functional CAM-B3LYP in the BS-DFT framework as a most efficient method for accurately and affordably predicting both and values.

View Article and Find Full Text PDF

Aiming at the information asymmetry between pharmaceutical enterprises' technological innovation decisions and government subsidy strategy, this paper establishes a differential game model consisting of the government and a single pharmaceutical company, proposes three different government subsidy strategies, and obtains an equilibrium solution with the help of the Hamilton-Jacobi-Bellman equation, taking into consideration of the transmission effect of the enterprise's reputation. First, the innovation decisions of pharmaceutical firms without government subsidies are analysed, and based on this, the optimal strategies with government subsidies for non-cooperative pacts and cooperation between the government and enterprises are analysed separately. In addition, the effects of different subsidy strategies on the government's investment efficiency, corporate reputation, and the choice of corporate innovation strategies are compared, and the results are verified by numerical analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!