The importance of Wnt pathway signaling in development of bone has been well established. Here we investigated the role of a known Wnt target, ENC1 (ectodermal-neural cortex 1; NRP/B), in osteoblast differentiation. Enc1 expression was detected in mouse osteoblasts, chondrocytes, and osteocytes by in situ hybridization, and osteoblastic expression was verified in differentiating primary cultures and MC3T3-E1 pre-osteoblast cells, with 57 kDa and 67 kDa ENC1 protein isoforms detected throughout differentiation. Induced knockdown of both ENC1 isoforms reduced alkaline phosphatase staining and virtually abolished MC3T3-E1 mineralization. At culture confluence, Alpl (alkaline phosphatase liver/bone/kidney) expression was markedly reduced compared with control cells, and there was significant and coordinated alteration of other genes involved in cellular phosphate biochemistry. In contrast, with 67 kDa-selective knockdown mineralized nodule formation was enhanced and there was a two-fold increase in Alpl expression at confluence. There was enhanced expression of Wnt/β-catenin target genes with knockdown of both isoforms at this time-point and a five-fold increase in Frzb (Frizzled related protein) with 67 kDa-selective knockdown at mineralization, indicating possible ENC1 interactions with Wnt signaling in osteoblasts. These results are the first to demonstrate a role for ENC1 in the control of osteoblast differentiation. Additionally, the contrasting mineralization phenotypes and transcriptional patterns seen with coordinate knockdown of both ENC1 isoforms vs selective knockdown of 67 kDa ENC1 suggest opposing roles for the isoforms in regulation of osteoblastic differentiation, through effects on Alpl expression and phosphate cellular biochemistry. This study is the first to report differential roles for the ENC1 isoforms in any cell lineage. J. Cell. Biochem. 118: 2141-2150, 2017. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.25851 | DOI Listing |
J Cell Biochem
August 2017
The University of Queensland, Brisbane, Queensland, Australia.
The importance of Wnt pathway signaling in development of bone has been well established. Here we investigated the role of a known Wnt target, ENC1 (ectodermal-neural cortex 1; NRP/B), in osteoblast differentiation. Enc1 expression was detected in mouse osteoblasts, chondrocytes, and osteocytes by in situ hybridization, and osteoblastic expression was verified in differentiating primary cultures and MC3T3-E1 pre-osteoblast cells, with 57 kDa and 67 kDa ENC1 protein isoforms detected throughout differentiation.
View Article and Find Full Text PDFHum Mol Genet
December 2004
Department of Oncology/Pathology, CCK, Karolinska Hopsital and Institute, Stockholm, Sweden.
Karyotypical alteration of chromosome 5 and in particular band 5q13 is a frequent finding in hairy cell leukemia (HCL). We have previously identified a number of candidate genes localized in close proximity to a constitutional inv(5)(p13.1q13.
View Article and Find Full Text PDFJ Proteome Res
October 2004
Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095-1570, USA.
We have constructed a database of alternatively spliced protein forms (ASP), consisting of 13,384 protein isoform sequences of 4422 human genes (www.bioinformatics.ucla.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!