Difference in evolutionary patterns of strongly or weakly selected characters among ant populations.

Sci Rep

Laboratory of Animal Ecology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan.

Published: December 2016

Despite being a central issue in evolutionary biology, few studies have examined the stasis of characters in populations with no gene flow. A possible mechanism of such stasis is stabilizing selection with similar peaks in each population. This study examined the evolutionary patterns of morphological characters with and without strong selection in ant populations. We show that compared to a character that seems to be less important, characters that are more important were less variable within and among populations. Microsatellite analyses showed significant genetic differences between populations, implying limited gene flow between them. The observed levels of genetic differentiation cannot be attributed to recent population separations. Thus, the observed differences in morphological variance seem to reflect the degree of selection on each character. The less important character changed proportionately with time, but such a pattern was not observed in more important characters. These results suggest that stabilizing selection maintains morphological stasis between populations of the same species with minimal gene flow independent of divergence times.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171879PMC
http://dx.doi.org/10.1038/srep39451DOI Listing

Publication Analysis

Top Keywords

gene flow
12
evolutionary patterns
8
ant populations
8
stabilizing selection
8
populations
6
characters
5
difference evolutionary
4
patterns weakly
4
weakly selected
4
selected characters
4

Similar Publications

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

Deep-sea shrimps from the family Alvinocarididae are prominent inhabitants of chemosynthesis-based habitats worldwide. However, their genetic diversity and population connectivity remain poorly understood due to limited sampling. To fill these knowledge gaps, we compared the population genetics of two vent- and seep-dwelling alvinocaridid species with overlapped geographic ranges between the South China Sea and the Manus Basin.

View Article and Find Full Text PDF

Background: Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

LYVE1 and IL1RL1 are mitochondrial permeability transition-driven necrosis-related genes in heart failure.

Int J Biochem Cell Biol

January 2025

Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China. Electronic address:

Background: Heart failure is linked to increased hospitalization and mortality. Mitochondrial permeability transition-driven necrosis is associated with cardiovascular diseases, but its role in heart failure is unclear. This study aimed to identify and validate genes related to mitochondrial permeability transition-driven necrosis in heart failure, potentially leading to new drug targets and signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!