Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Finding pharmaceutically relevant target conformations from an arbitrary set of protein conformations remains a challenge in structure-based virtual screening (SBVS). The growth in the number of available conformations, either experimentally determined or computationally derived, obscures the situation further. While the inflated conformation space potentially contains viable druggable targets, the increase of conformational complexity, as a consequence, poses a selection problem. To address this challenge, we took advantage of machine learning methods, namely an over-sampling and a binary classification procedure, and present a novel method to select druggable receptor conformations. Specifically, we trained a binary classifier on a set of nuclear receptor conformations, wherein each conformation was labeled with an enrichment measure for a corresponding SBVS. The classifier enabled us to formulate suggestions and identify enriching SBVS targets for six of seven nuclear receptors. Further, the classifier can be extended to other proteins of interest simply by feeding new training data sets to the classifier. Our work, thus, provides a methodology to identify pharmaceutically interesting receptor conformations for nuclear receptors and other drug targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.12900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!