Heterogametic species require chromosome-wide gene regulation to compensate for differences in sex chromosome gene dosage. In Drosophila melanogaster, transcriptional output from the single male X-chromosome is equalized to that of XX females by recruitment of the male-specific lethal (MSL) complex, which increases transcript levels of active genes 2-fold. The MSL complex contains several protein components and two non-coding RNA on the X ( roX) RNAs that are transcriptionally activated by the MSL complex. We previously discovered that targeting of the MSL complex to the X-chromosome is dependent on the chromatin-linked adapter for MSL proteins (CLAMP) zinc finger protein. To better understand CLAMP function, we used the CRISPR/Cas9 genome editing system to generate a frameshift mutation in the clamp gene that eliminates expression of the CLAMP protein. We found that clamp null females die at the third instar larval stage, while almost all clamp null males die at earlier developmental stages. Moreover, we found that in clamp null females roX gene expression is activated, whereas in clamp null males roX gene expression is reduced. Therefore, CLAMP regulates roX abundance in a sex-specific manner. Our results provide new insights into sex-specific gene regulation by an essential transcription factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441936PMC
http://dx.doi.org/10.1007/s10577-016-9541-9DOI Listing

Publication Analysis

Top Keywords

msl complex
16
clamp null
16
clamp
10
clamp protein
8
rox rnas
8
gene regulation
8
null females
8
null males
8
rox gene
8
gene expression
8

Similar Publications

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

A noncanonical role of roX RNAs in autosomal epigenetic repression.

Nat Commun

January 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Article Synopsis
  • roX RNAs are essential for male development in Drosophila, and their absence leads to male lethality during late larval stages.
  • They are known for their role in balancing X-linked gene expression but have shown to also target autosomal genes, which had not been extensively studied before.
  • The research highlights that roX RNAs function as both activators of X-linked genes and repressors of autosomal genes through their interactions with specific protein complexes, revealing a complex role in gene regulation.
View Article and Find Full Text PDF

N-terminus of MSL1 is critical for dosage compensation.

Elife

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation.

The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1.

View Article and Find Full Text PDF

Leveraging Multi-omics to Disentangle the Complexity of Ovarian Cancer.

Mol Diagn Ther

November 2024

Divisions of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, MS 8613, Aurora, CO, 80045, USA.

To better understand ovarian cancer lethality and treatment resistance, sophisticated computational approaches are required that address the complexity of the tumor microenvironment, genomic heterogeneity, and tumor evolution. The ovarian cancer tumor ecosystem consists of multiple tumors and cell types that support disease growth and progression. Over the last two decades, there has been a revolution in -omic methodologies to broadly define components and essential processes within the tumor microenvironment, including transcriptomics, metabolomics, proteomics, genome sequencing, and single-cell analyses.

View Article and Find Full Text PDF

The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3' UTR to regulate translation.

Biophys Chem

January 2025

Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany. Electronic address:

Repression of msl-2 mRNA translation is essential for viability of Drosophila melanogaster females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3' untranslated region (UTR) of the msl-2 transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with msl-2 are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!