Genome-wide association mapping as well as marker- and haplotype-based genome-wide selection unraveled a complex genetic architecture of grain yield with absence of large effect QTL and presence of local epistatic effects. The genetic architecture of grain yield determines to a large extent the optimum design of genomic-assisted wheat breeding programs. The main goal of our study was to examine the potential and limitations to dissect the genetic architecture of grain yield in wheat using a large experimental data set. Our study was based on phenotypic information and genomic data of 13,901 SNPs of a diverse set of 3816 elite wheat lines adapted to Central Europe. We applied genome-wide association mapping based on experimental and simulated data sets and performed marker- and haplotype-based genomic prediction. Computer simulations revealed for our mapping population a high power to detect QTL, even if they individually explained only 2.5% of the genetic variation. Despite this, we found no stable marker-trait associations when validating in independent subsets. A two-dimensional scan for marker-marker interactions indicated presence of local epistasis which was further supported by improved prediction abilities when shifting from marker- to haplotype-based genome-wide prediction approaches. We observed that marker effects estimated using genome-wide prediction approaches strongly varied across years albeit resulting in high prediction abilities. Thus, our results suggested that the prediction accuracy of genomic selection in wheat is mainly driven by relatedness rather than by exploiting knowledge of the genetic architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-016-2840-xDOI Listing

Publication Analysis

Top Keywords

genetic architecture
16
presence local
12
marker- haplotype-based
12
architecture grain
12
grain yield
12
local epistasis
8
adapted central
8
central europe
8
genome-wide association
8
association mapping
8

Similar Publications

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

The variability in translational models profoundly impacts the outcomes and predictive value of preclinical studies for gastrointestinal (GI) cancer treatments. Preclinical models, including 2D cell cultures, 3D organoids, patient-derived xenografts (PDXs), and animal models, provide distinct advantages and limitations in replicating the complex tumor microenvironment (TME) of human cancers. Each model's unique biological and structural differences contribute to discrepancies in treatment responses, challenging the direct translation of experimental results to clinical settings.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.

View Article and Find Full Text PDF

Characteristics of Phages and Their Interactions With Hosts in Anaerobic Reactors.

Environ Microbiol

January 2025

Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China.

Anaerobic digestion (AD) of organic wastes relies on the interaction and cooperation of various microorganisms. Phages are crucial components of the microbial community in AD systems, but their diversity and interactions with the prokaryotic populations are still inadequately comprehended. In this study, 2121 viral operational taxonomic units (vOTUs) were recovered from 12 anaerobic fatty acid-fed reactors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!