Permutation transformations of tensors with an application.

Springerplus

School of Mathematics and Statistics, Yunnan University, Kunming, 650091 People's Republic of China.

Published: November 2016

The permutation transformation of tensors is introduced and its basic properties are discussed. The invariance under permutation transformations is studied for some important structure tensors such as symmetric tensors, positive definite (positive semidefinite) tensors, -tensors, -tensors, Hankel tensors, -tensors, -tensors and -tensors. Finally, as an application of permutation transformations of tensors, the canonical form theorem of tensors is given. The theorem shows that some problems of higher dimension tensors can be translated into the corresponding problems of lower dimension weakly irreducible tensors so as to handle easily.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125354PMC
http://dx.doi.org/10.1186/s40064-016-3720-1DOI Listing

Publication Analysis

Top Keywords

permutation transformations
12
-tensors -tensors
12
tensors
10
transformations tensors
8
application permutation
8
tensors -tensors
8
-tensors
5
permutation
4
tensors application
4
permutation transformation
4

Similar Publications

On the parameterized complexity of the median and closest problems under some permutation metrics.

Algorithms Mol Biol

December 2024

Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil.

Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been proposed, based on finding the minimum number of rearrangement events to transform one genome into the other, using some predefined operation.

View Article and Find Full Text PDF

Endhered Patterns in Matchings and RNA.

J Comput Biol

December 2024

Laboratoire d'Informatique de Bourgogne, Université de Bourgogne, Dijon Cedex, France.

An is a subset of arcs in matchings, such that the corresponding starting points are consecutive, and the same holds for the ending points. Such patterns are in one-to-one correspondence with the permutations. We focus on the occurrence frequency of such patterns in matchings and native (real-world) RNA structures with pseudoknots.

View Article and Find Full Text PDF

Many modern cryptographic primitives for hashing and (authenticated) encryption make use of constructions that are instantiated with an iterated cryptographic permutation that operates on a fixed-width state consisting of an array of bits. Often, such permutations are the repeated application of a relatively simple round function consisting of a linear layer and a non-linear layer. These constructions do not require that the underlying function is a permutation and they can plausibly be based on a non-invertible transformation.

View Article and Find Full Text PDF

Pd/Cu Catalyzed Asymmetric Allylation for Stereodivergent Synthesis of Glutamic Acid Derivatives.

Chemistry

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.

A synergistic Pd/Cu catalyst system has been developed for stereodivergent transformation of Morita-Baylis-Hillman (MBH) carbonates and Schiff bases derived from simple amino acids to afford a series of optically active β-branched γ-methyleneglutamic acid derivatives with adjacent tertiary/tertiary and quaternary/tertiary stereocenters in high yields (up to 96 %) with excellent diastereo- and enantioselectivities (>20/1 dr and >99 % ee in most cases) under mild conditions. The use of SKP ligand is disclosed to be crucial for the success of the transformation, and in particular allowing the reaction to proceed at low catalyst loading (0.02 mol % for Pd and 0.

View Article and Find Full Text PDF

Quantum algorithms can afford greater computational efficiency compared to their classical counterparts when addressing specific computing tasks. We describe here the implementation, using a polar molecule in an external electric field, of the single-qudit cyclic permutation identification algorithm proposed by Gedik et al. [Sci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!