Background: Central nervous system (CNS) infections present a grave health care challenge due to high morbidity and mortality. Clinical findings and conventional laboratory assessments are not sufficiently distinct for specific etiologic diagnosis. Identification of pathogens is a key to appropriate therapy.
Aim: In this retrospective observational study, we evaluated the efficacy and clinical utility of syndrome evaluation system (SES) for diagnosing clinically suspected CNS infections.
Materials And Methods: This retrospective analysis included inpatients in our tertiary level neurointensive care unit (NICU) and ward from February 2010 to December 2013. Cerebrospinal fluid (CSF) samples of 70 patients, clinically suspected of having CNS infections, were subjected to routine laboratory tests, culture, imaging, and SES. We analyzed the efficacy of SES in the diagnosis of CNS infections and its utility in therapeutic decision-making.
Results: SES had a clinical sensitivity of 57.4% and clinical specificity of 95.6%. and were the top two bacterial pathogens, whereas Herpes simplex virus (HSV) was the most common viral pathogen. Polymicrobial infections were detected in 32.14% of SES-positive cases. SES elicited a change in the management in 30% of the patients from initial empiric therapy. At discharge, 51 patients recovered fully while 11 patients had partial recovery. Three-month follow-up showed only six patients to have neurological deficits.
Conclusion: In a tertiary care center, etiological microbial diagnosis is central to appropriate therapy and outcomes. Sensitive and accurate multiplex molecular diagnostics play a critical role in not only identifying the causative pathogen but also in helping clinicians to institute appropriate therapy, reduce overuse of antimicrobials, and ensure superior clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144470 | PMC |
http://dx.doi.org/10.4103/0972-2327.192483 | DOI Listing |
Microbiol Res
December 2024
School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China. Electronic address:
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent.
View Article and Find Full Text PDFAm J Dermatopathol
December 2024
Department of Dermatology, Vagelos College of Physician and Surgeons of Columbia University and New York Presbyterian Hospital, New York, NY; and.
Primary cutaneous amoebiasis is rare, and typically affects immunocompromised patients and presents with unique clinical and histopathologic changes. Untreated, the infection could progress to involve the central nervous system, which is almost universally fatal. We present a case of primary cutaneous acanthamoebiasis in a patient with chronic lymphocytic leukemia on acalabrutinib.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Georgia, Athens, GA, USA.
Background: Inflammatory cells play a key role in the pathophysiology of AD and other neurodegenerative disorders. Glycans are known to mediate inflammatory cell activation and migration yet very little is understood about the expression of glycans, glycoproteins, and other glycoconjugates at the CP which serves as a gateway for peripheral immune cells into the brain. In a familial AD mouse model, we observed increased expression of Siglec-F-recognized glycans on CP epithelial cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Peking University, Beijing, Beijing, China.
Background: Prion diseases are a group of neurodegenerative diseases associated with prion protein. The disease can be caused by mutations in the PRNP gene, the gene that encodes prion protein. An octapeptide repeat on the N-terminus of prion protein plays an important role in normal intercellular function of prion protein.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Massachusetts Chan Medical School, Worcester, MA, USA.
Background: In Alzheimer's disease (AD), changes in intestinal microbiota and systemic inflammation are concomitant with neuroinflammation and cognitive decline. This has led to the theory of microbial communities or infections as being causative in the development of neuroinflammation and immunosenescence seen in AD. Our research has demonstrated a decreased taxonomic diversity and an increased abundance of pathobionts in the gut of AD patients (Haran, mBio 2019), which is sufficient to promote amyloid and tau deposition in a mouse model (Chen, Gut 2023).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!