Extracellular vesicles (EVs) have been shown to play an important role in intercellular communication as carriers of DNA, RNA and proteins. While the intercellular transfer of miRNA through EVs has been extensively studied, the stability of extracellular miRNA (ex-miRNA) once engulfed by a recipient cell remains to be determined. Here, we identify the ex-miRNA-directed phenotype to be transient due to the rapid decay of ex-miRNA. We demonstrate that the ex-miR-223-3p transferred from polymorphonuclear leukocytes to cancer cells were functional, as demonstrated by the decreased expression of its target FOXO1 and the occurrence of epithelial-mesenchymal transition reprogramming. We showed that the engulfed ex-miRNA, unlike endogenous miRNA, was unstable, enabling dynamic regulation and a return to a non-invasive phenotype within 8 h. This transient phenotype could be modulated by targeting XRN1/PACMAN exonuclease. Indeed, its silencing was associated with slower decay of ex-miR-223-3p and subsequently prolonged the invasive properties. In conclusion, we showed that the 'steady step' level of engulfed miRNA and its subsequent activity was dependent on the presence of a donor cell in the surroundings to constantly fuel the recipient cell with ex-miRNAs and of XRN1 exonuclease, which is involved in the decay of these imported miRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397191 | PMC |
http://dx.doi.org/10.1093/nar/gkw1284 | DOI Listing |
Adv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFMagn Reson Med
January 2025
MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
Purpose: MR-based FID navigators (FIDnavs) do not require gradient pulses and are attractive for prospective motion correction (PMC) due to short acquisition times and high sampling rates. However, accuracy and precision are limited and depend on a separate calibration measurement. Besides FIDnavs, stationary NMR field probes are also capable of measuring local, motion-induced field changes.
View Article and Find Full Text PDFATS Sch
January 2025
Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland.
Rapid accumulation of knowledge and skills by trainees in the intensive care unit assumes prior mastery of clinically relevant core physiology concepts. However, for many fellows, their foundational physiology knowledge was acquired years earlier during their preclinical medical curricula and variably reinforced during the remainder of their undergraduate and graduate medical training. We sought to assess the retention of clinically relevant pulmonary physiology knowledge among pulmonary and critical care medicine (PCCM) and critical care medicine (CCM) fellows.
View Article and Find Full Text PDFActa Ophthalmol
January 2025
Harvard University, Boston, Cambridge, USA.
Purpose: There is evidence of the role of dark adaptation (DA) as a functional biomarker in age-related macular degeneration (AMD) where foveal cones are impacted during the initial stages of AMD. In this study we determine the repeatability of smartphone application (MOBILE DA) to evaluate the cone-mediated dark adaptation (DA) in healthy young adults.
Methods: Testing was done by placing a smartphone in front of the subject in a dark room.
J Colloid Interface Sci
January 2025
State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. Electronic address:
Lithium-sulfur (Li-S) batteries have attracted significant attention due to their high theoretical energy density, low cost and environmental friendliness, which are considered one of the most promising candidates for next-generation energy storage devices. However, the sluggish kinetics associated with sulfur oxidation-reduction reactions and the detrimental shuttle effect caused by lithium polysulfides (LiPSs) significantly impacts the electrochemical performance of Li-S batteries. In this work, Co single-atom catalyst (Co-NC) on an ordered macro-microporous structure are designed, and the catalyst are coated onto 2325 separator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!