The mouse/murine protein, MDM2, and its human homolog, HDM2, are important negative regulators of the p53 tumor suppressor protein. In normal, untransformed cells, MDM2 levels are tightly regulated to control expression of p53 and apoptosis. Conversely, MDM2 expression appears inherently higher in multiple types of cancer cells, thereby supporting its role as a suppressor of p53 pro-apoptotic activity. MDM2 amplification ranges between two- and ten-fold as reported in brain, breast, lung, and soft tissue tumors. MDM2 regulates p53 by two mechanisms: acting as a physical blockade of the transcriptional activation domain and E3 ubiquitin ligase. In addition to its relationship with p53, MDM2 behaves as an independent oncogene. These inherent characteristics make MDM2 a promising target for developing anti-cancer therapies. Investigators are now exploring both p53- dependent and independent cancer cell death pathways by targeting MDM2. Disrupting MDM2-p53 interaction with resultant increase in p53 induces cancer cell cycle arrest and apoptosis. Targeting over-expressed MDM2 on cancer cell membranes disrupts membrane integrity by pore formation, causing membrane destabilization and rapid cancer cell-specific necrosis. In this review, evidence supporting the evolving role of MDM2 as an anti-cancer target and a molecular-based tumor biomarker will be discussed.
Download full-text PDF |
Source |
---|
Background/aims: Certain sociodemographic groups are routinely underrepresented in clinical trials, limiting generalisability. Here, we describe the extent to which enriched enrolment approaches yielded a diverse trial population enriched for older age in a randomised controlled trial of a blood-based multi-cancer early detection test (NCT05611632).
Methods: Participants aged 50-77 years were recruited from eight Cancer Alliance regions in England.
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!