Hitting a Moving Target: Glioma Stem Cells Demand New Approaches in Glioblastoma Therapy.

Curr Cancer Drug Targets

Neuro-Oncology Laboratory, Department of Neurosurgery, Northwestern University, 676 N. St. Clair Street, Suite 2210, Chicago, IL60611, United States.

Published: October 2017

Background: Glioblastoma multiforme (GBM) continues to devastate patients and outfox investigators and clinicians despite the preponderance of research directed at its biology, pathogenesis and therapeutic advances. GBM routinely outlasts multidisciplinary treatment protocols, almost inevitably recurring in a yet more aggressive and resistant form with distinct genetic differences from the original tumor. Attempts to glean further insight into GBM point increasingly toward a subpopulation of cells with a stem-like phenotype. These cancer stem cells, similar to those now described in a variety of malignancies, are capable of tumorigenesis from a population of susceptible cells.

Conclusions: Glioma stem cells have thus become a prevalent focus in GBM research for their presumed role in development, maintenance and recurrence of tumors. Glioma stem cells infiltrate the white matter surrounding tumors and often evade resection. They are uniquely suited both biochemically and environmentally to resist the best therapy currently available, intrinsically and efficiently resistant to standard chemo- and radiotherapy. These stem cells create an extremely heterogenous tumor that to date has had an answer for every therapeutic question, with continued dismal patient survival. Targeting this population of glioma stem cells may hold the long-awaited key to durable therapeutic efficacy in GBM.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568009616666161215161924DOI Listing

Publication Analysis

Top Keywords

stem cells
24
glioma stem
16
cells
7
stem
6
gbm
5
hitting moving
4
moving target
4
glioma
4
target glioma
4
cells demand
4

Similar Publications

[Interpretation of the guidelines for diagnosing and treating paroxysmal nocturnal hemoglobinuria in China (2024)].

Zhonghua Xue Ye Xue Za Zhi

December 2024

Department of Hematology, General Hospital, Tianjin Medical University, Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin Institute of Hematology, Tianjin 300052, China.

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disorder of hematopoietic stem cells induced by PIG-A gene mutations. It is clinically manifested by hemolysis, bone marrow failure, and high-risk concurrent thrombosis, which are life-threatening in severe cases. Significant progress has been made in the pathogenesis research and clinical diagnosis and treatment of PNH in recent years.

View Article and Find Full Text PDF

Linking tumor immune infiltration to enhanced longevity in recurrence-free breast cancer.

ESMO Open

January 2025

Translational Genomics and Targeted Therapies in Solid Tumors group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Institute of Cancer and Blood Diseases, Hospital Clinic of Barcelona, Barcelona, Spain; Reveal Genomics, Barcelona, Spain. Electronic address:

Background: The infiltration of tumor-infiltrating B cells and plasma cells in early-stage breast cancer has been associated with a reduced risk of distant metastasis. However, the influence of B-cell tumor infiltration on overall patient survival remains unclear.

Materials And Methods: This study explored the relationship between an antitumor immune response, measured by a 14-gene B-cell/immunoglobulin (IGG) signature, and mortality risk in 9638 breast cancer patients across three datasets.

View Article and Find Full Text PDF

Cancer is one of the most fatal diseases threatening public health globally, and tumor metastasis causes greater than 90 % of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of various human cancers. Cancer stem cells (CSCs) are a rare population of cancer cells and increasing evidences indicated CSCs are the driving force of tumor metastasis. In this study, a p-AuNSs-assisted single-cell Raman spectra has been established, to extract and amplify of CSCs fingerprints with single cell sensitivity.

View Article and Find Full Text PDF

Lactobacillus salivarius metabolite succinate enhances chicken intestinal stem cell activities via the SUCNR1-mitochondria axis.

Poult Sci

December 2024

MOA Key Laboratory of Animal Virology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

The activity of intestinal stem cells (ISCs) can be modulated by Lactobacillus, which subsequently affects the mucosal absorptive capacity. However, the underlying mechanisms remain unclear. In this study, a total of 189 Hy-Line Brown chickens (Gallus) were randomly assigned to one of seven experimental groups (n = 27 per group).

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!