Modulation of Elasticity and Interactions in Charged Lipid Multibilayers: Monovalent Salt Solutions.

Langmuir

Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010 Graz, Austria.

Published: December 2016

We have studied the electrostatic screening effect of NaCl solutions on the interactions between anionic lipid bilayers in the fluid lamellar phase using a Poisson-Boltzmann-based mean-field approach with constant charge and constant potential limiting charge regulation boundary conditions. The full DLVO potential, including the electrostatic, hydration and van der Waals interactions, was coupled to thermal bending fluctuations of the membranes via a variational Gaussian Ansatz. This allowed us to analyze the coupling between the osmotic pressure and the fluctuation amplitudes and compare them both simultaneously with their measured dependence on the bilayer separation, determined by the small-angle X-ray scattering experiments. High-structural resolution analysis of the scattering data revealed no significant changes of membrane structure as a function of salt concentration. Parsimonious description of our results is consistent with the constant charge limit of the general charge regulation phenomenology, with fully dissociated lipid charge groups, together with a 6-fold reduction of the membranes' bending rigidity upon increasing NaCl concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180256PMC
http://dx.doi.org/10.1021/acs.langmuir.6b03614DOI Listing

Publication Analysis

Top Keywords

constant charge
8
charge regulation
8
charge
5
modulation elasticity
4
elasticity interactions
4
interactions charged
4
charged lipid
4
lipid multibilayers
4
multibilayers monovalent
4
monovalent salt
4

Similar Publications

A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.

View Article and Find Full Text PDF

In the present study, the Homotopy Levenberg-Marquardt Algorithm (HLMA) and the Parameter Variation Levenberg-Marquardt Algorithm (PV-LMA), both developed in the context of high-temperature composition, are proposed to address the equilibrium composition model of plasma under the condition of local thermodynamic and chemical equilibrium. This model is essentially a nonlinear system of weakly singular Jacobian matrices. The model was formulated on the basis of the Saha and Guldberg-Waage equations, integrated with Dalton's law of partial pressures, stoichiometric equilibrium, and the law of conservation of charge, resulting in a nonlinear system of equations with a weakly singular Jacobian matrix.

View Article and Find Full Text PDF

In this paper, Gd-doped ZrO gate dielectric films and metal-oxide-semiconductor (MOS) capacitors structured as Al/ZrGdO /Si were prepared using an ultraviolet ozone (UVO)-assisted sol-gel method. The effects of heat treatment temperature on the microstructure, chemical bonding state, optical properties, surface morphology and electrical characteristics of the ZrGdO composite films and MOS capacitors were systematically investigated. The crystalline phase of the ZrGdO films appeared only at 600 °C, indicating that Gd doping effectively inhibits the crystallization of ZrO films.

View Article and Find Full Text PDF

This prediction evaluates the different physical characteristics of magnetic materials XFeO (X = Mg, Ca and Sr) by using density functional theory (DFT). The generalized gradient approximation (GGA) approach is chosen to define the exchange and correlation potential. The structural study of the compounds XFeO (X = Mg, Ca and Sr) shows that the ferromagnetic phase is the more stable ground state, where all the parameters of the network are given at equilibrium.

View Article and Find Full Text PDF

Why SbSe/CdS Interface Produces Higher Power Conversion Efficiency.

J Phys Chem Lett

January 2025

College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!