Nitrogen mustard anticancer drugs generate highly reactive aziridinium ions that alkylate DNA. Monoadducts arising from reaction with position N7 of guanine residues are the major DNA adducts generated by these agents. Interstrand cross-links in which the drug bridges position N7 of two guanine residues are formed in low yields relative to those of the monoadducts but are generally thought to be central to medicinal activity. The N7-alkylguanine residues generated by nitrogen mustards are depurinated to yield abasic (Ap) sites in duplex DNA. Here, we show that Ap sites generated by the nitrogen mustard mechlorethamine lead to interstrand cross-links of a type not previously associated with this drug. Gel electrophoretic data were consistent with early evolution of the expected drug-bridged cross-links, followed by the appearance of Ap-derived cross-links. The evidence is further consistent with a reaction pathway involving alkylation of a guanine residue in a 5'-GT sequence, followed by depurination to generate the Ap site, and cross-link formation via reaction of the Ap aldehyde residue with the opposing adenine residue at this site [Price, N. E., Johnson, K. M., Wang, J., Fekry, M. I., Wang, Y., and Gates, K. S. (2014) J. Am. Chem. Soc. 136, 3483-3490]. The monofunctional DNA-alkylating agents 2-chloro-N,N-diethylethanamine 5, (2-chloroethyl)ethylsulfide 6, and natural product leinamycin similarly were found to induce the formation of Ap-derived cross-links in duplex DNA. This work provides the first characterization of Ap-derived cross-links at sequences in which a cytosine residue is located directly opposing the Ap site. Cross-linking processes of this type could be relevant in medicine and biology because Ap sites with directly opposing cytosine residues occur frequently in genomic DNA via spontaneous or enzymatic depurination of guanine and N7-alkylguanine residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.6b01080 | DOI Listing |
J Hazard Mater
January 2025
Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Ave., New York, NY 10031, United States. Electronic address:
Activated carbon textile (C-Text) was chemically modified to incorporate oxygen- (C-Text-O), nitrogen- (C-Text-ON), and/or sulfur- (C-Text-OS) containing surface functional groups, aiming to enhance their reactive adsorption capacity. The modified textiles were evaluated for their ability to detoxify 2-choloroethyl ethyl sulfide (CEES) in both vapor and liquid phases, under dry and humid conditions. The maximum amount of water adsorbed was directly affected by the surface area (R = 0.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Clinical and Public Health Research Center, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Health Center for Women and Children, Chongqing, China; Chongqing Research Center for Prevention & Control of Matermal and Child Disease and Public Health, Chongqing, China. Electronic address:
Nitrogen mustard (NM) is a vesicant agent with potent toxic effects on various tissues. Numerous theories have been proposed to explain its toxic mechanisms, yet research on the interconnections among these theories is lacking. This study focuses on analyzing the characteristics of genes involved in NM-induced bronchial injury within the Comparative Toxicogenomics Database (CTD).
View Article and Find Full Text PDFFoods
December 2024
Department of Microbiology, Graphic Era University, Dehradun 248001, Uttarakhand, India.
The present investigation deals with comparisons drawn among three types of different mustard seed coat colors, namely, Black (), Brown (), and White (), with respect to protein's bio-availability through pepsin digestibility, with and without the involvement of major anti-nutritional factors (glucosinolate type AITC, Allylisothiothiocyanate) and relative food functions. These are validated by means of crude protein determination, precipitated protein isolate preparation for evaluating the fat absorption capacity (FAC), emulsifying activity (EA), emulsion stability (ES), whippability, foam stability (FS), the nitrogen solubility index (NSI), and the protein dispersibility index (PDI). The results indicate that the partial removal of glucosinolates from brown mustard (0.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), UMR CNRS-ESPCI Paris 8231, ESPCI Paris, PSL University, CNRS, Paris, France.
Adduction on protein nucleophile sites by mustard agents can be monitored to assess detection of retrospective exposure to these agents. Cysteine 34 (Cys34) on human serum albumin was selected as the target of choice. This work targets di- and tripeptides adducted on Cys34 by sulfur mustard, sesquimustard, and nitrogen mustards separated in hydrophilic liquid chromatography (HILIC) and Reversed-Phase (RP) mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!