This study assessed the short-term impacts of ditch blocking on water table depth and vegetation community structure in a historically drained blanket bog. A chronosequence approach was used to compare vegetation near ditches blocked 5 years, 4 years and 1 year prior to the study with vegetation near unblocked ditches. Plots adjacent to and 3 m away from 70 ditches within an area of blanket bog were assessed for floristic composition, aeration depth using steel bars, and topography using LiDAR data. No changes in aeration depth or vegetation parameters were detected as a function of ditch-blocking, time since blocking, or distance from the ditch, with the exception of non-Sphagnum bryophytes which had lower cover in quadrats adjacent to ditches that had been blocked for 5 years. Analysis of LiDAR data and the observed proximity of the water table to the peat surface led us to conclude that the subdued ecosystem responses to ditch-blocking were the result of historical peat subsidence within a 4-5 m zone either side of each ditch, which had effectively lowered the peat surface to the new, ditch-influenced water table. We estimate that this process led to the loss of around 500,000 m peat within the 38 km study area following drainage, due to a combination of oxidation and compaction. Assuming that 50% of the volume loss was due to oxidation, this amounts to a carbon loss of 11,000 Mg C over this area, i.e. 3 Mg C ha. The apparent 'self-rewetting' of blanket bogs in the decades following drainage has implications for their restoration as it suggests that there may not be large quantities of dry peat left to rewet, and that there is a risk of inundation (potentially leading to high methane emissions) along subsided ditch lines. Many peatland processes are likely to be maintained in drained blanket bog, including support of typical peatland vegetation, but infilling of lost peat and recovery of original C stocks are likely to take longer than is generally anticipated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2016.12.018 | DOI Listing |
J Environ Manage
June 2024
Environmental Research Institute, UHI North, West and Hebrides, University of the Highlands and Islands, Thurso, Caithness, Scotland, KW14 7JD, UK. Electronic address:
Harvesting of plantation conifers on peatlands is carried out as part of restoration and forestry operations. In particular, in the UK and Ireland, conifer plantations on drained ombrotrophic blanket and raised bogs are increasingly being removed (by harvesting), along with blocking of drainage ditches to help raise water tables to reinitiate and restore bog vegetation and function. However, both tree harvesting and peatland restoration operations can have significant impacts on water quality at local and catchment scales.
View Article and Find Full Text PDFSci Total Environ
April 2021
water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK.
Afforestation is a significant cause of global peatland degradation. In some regions, afforested bogs are now undergoing clear-felling and restoration, often known as forest-to-bog restoration. We studied differences in water-table depth (WTD) and porewater chemistry between intact, afforested, and restored bogs at a raised bog and blanket bog location.
View Article and Find Full Text PDFSci Total Environ
November 2020
Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso KW14 7JD, UK. Electronic address:
Peatland restoration is undertaken to bring back key peatland ecosystem services, including carbon storage. In the case of drained, afforested blanket peatlands, restoration through drain blocking and tree removal may impact upon aquatic carbon concentrations and export, which needs to be accounted for when considering the carbon benefits of restoration. This study investigated concentrations and export of aquatic carbon from a drained, afforested blanket bog catchment, where 12% of the catchment underwent drain blocking and conifer removal (termed 'forest-to-bog' restoration), and from two control catchments: one in open bog and one that remained afforested.
View Article and Find Full Text PDFClin Diabetes Endocrinol
May 2020
Michigan Medicine, Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, 24 Frank Lloyd Wright Drive, Lobby C, Ann Arbor, MI 48106 USA.
Background: The prevalence of diabetes mellitus continues to rise. Diabetic foot ulcers with osteomyelitis are a diabetes-related complication presenting a significant burden to this cohort. A cure to diabetic foot osteomyelitis remains elusive and standard of care has failed to improve outcomes.
View Article and Find Full Text PDFGround Water
July 2020
U.S. Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI, 53562.
Protection of fens-wetlands dependent on groundwater discharge-requires characterization of groundwater sources and stresses. Because instrumentation and numerical modeling of fens is labor intensive, easy-to-apply methods that model fen distribution and their vulnerability to development are desirable. Here we demonstrate that fen areas can be simulated using existing steady-state MODFLOW models when the unsaturated zone flow (UZF) package is included.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!