Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles.

Biomaterials

Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology Octavian Fodor Cluj, Romania; Department of Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Croitorilor 19-21, Cluj-Napoca, Romania. Electronic address:

Published: March 2017

We have used albumin (BSA) bound to gold nanoparticles (GNPs) as active vectors to target liver cells. Our incentive to develop an original model of living liver cancer sprang from the ethical drawbacks that hindered the assessment of the selective character and the therapeutic capacity of these nano-biosystems in cancer patients. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Albumin bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of BSA bound to GNPs into tumor cells following ex-vivo intra-vascular perfusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2016.12.009DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
bsa bound
8
bound gnps
8
liver
5
selective
4
selective ex vivo
4
ex vivo photothermal
4
photothermal nano-therapy
4
nano-therapy solid
4
solid liver
4

Similar Publications

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation.

Nat Commun

December 2024

Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection.

Biosens Bioelectron

December 2024

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:

An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.

View Article and Find Full Text PDF

Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated.

View Article and Find Full Text PDF

Nanotechnology for the Diagnosis and Treatment of Liver Cancer.

Int J Nanomedicine

December 2024

Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.

Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!