A recently described symbiosis between the metabolically streamlined nitrogen-fixing cyanobacterium UCYN-A and a single-celled eukaryote prymnesiophyte alga is widely distributed throughout tropical and subtropical marine waters, and is thought to contribute significantly to nitrogen fixation in these regions. Several UCYN-A sublineages have been defined based on UCYN-A nitrogenase (nifH) sequences. Due to the low abundances of UCYN-A in the global oceans, currently existing molecular techniques are limited for detecting and quantifying these organisms. A targeted approach is needed to adequately characterize the diversity of this important marine cyanobacterium, and to advance understanding of its ecological importance. We present findings on the distribution of UCYN-A sublineages based on high throughput sequencing of UCYN-A nifH PCR amplicons from 78 samples distributed throughout many major oceanic provinces. These UCYN-A nifH fragments were used to define oligotypes, alternative taxonomic units defined by nucleotide positions with high variability. The data set was dominated by a single oligotype associated with the UCYN-A1 sublineage, consistent with previous observations of relatively high abundances in tropical and subtropical regions. However, this analysis also revealed for the first time the widespread distribution of the UCYN-A3 sublineage in oligotrophic waters. Furthermore, distinct assemblages of UCYN-A oligotypes were found in oligotrophic and coastally influenced waters. This unique data set provides a framework for determining the environmental controls on UCYN-A distributions and the ecological importance of the different sublineages.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.12505DOI Listing

Publication Analysis

Top Keywords

ucyn-a
9
tropical subtropical
8
ucyn-a sublineages
8
ucyn-a nifh
8
data set
8
distinct ecological
4
ecological niches
4
niches marine
4
marine symbiotic
4
symbiotic -fixing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!