Combined diabetes-obesity syndromes severely impair regeneration of acute skin wounds in mouse models. This study assessed the contribution of subcutaneous adipose tissue to exacerbated wound inflammatory conditions. Genetically obese (ob/ob) mice showed an increased expression of positive transcriptional effectors of adipocyte differentiation such as Krüppel-like factor (KLF)-5 and peroxisome proliferator-activated receptor (PPAR)-γ and an associated expression of leptin and fatty acid-binding protein (FABP)-4, but also CXCL2 in isolated subcutaneous fat. This observation in obese mice is in keeping with differentially elevated levels of KLF-5, PPAR-γ, leptin, FABP-4 and CXCL2 in in vitro-differentiated 3T3-L1 adipocytes. Notably, CXCL2 expression restrictively appeared upon cytokine (IL-1β/TNF-α) stimulation only in mature, but not immature 3T3-L1 adipocytes. Of importance, the critical regulator of adipocyte maturation, PPAR-γ, was merely expressed in the final phase of in-vitro induced adipocyte differentiation from 3T3-L1 pre-adipocytes. Consistently, the PPAR-γ agonist rosiglitazone suppressed cytokine-induced CXCL2 release from mature adipocytes, but not from early 3T3-L1 adipocyte stages. The inhibitory effect of PPAR-γ activation on CXCL2 release appeared to be a general anti-inflammatory effect in mature adipocytes, as cytokine-induced cyclooxygenase (Cox)-2 was simultaneously repressed by rosiglitazone. In accordance with these findings, oral administration of rosiglitazone to wounded obese mice significantly changed subcutaneous adipocyte morphology, reduced wound CXCL2 and Cox-2 expression and improved tissue regeneration. Thus, our data suggest that PPAR-γ might provide a target to suppress inflammatory signals from mature adipocytes, which add to the prolonged wound inflammation observed in diabetes-obesity conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167406PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168562PLOS

Publication Analysis

Top Keywords

adipocyte differentiation
12
mature adipocytes
12
fabp-4 cxcl2
8
obese mice
8
3t3-l1 adipocytes
8
cxcl2 release
8
adipocyte
6
ppar-γ
6
cxcl2
6
adipocytes
5

Similar Publications

Aims: Polycystic ovary syndrome (PCOS) is closely associated with metabolic disorders such as insulin resistance and obesity, but the role of adipogenesis in its pathophysiology remains unclear. This study investigates the role of adipogenesis in PCOS development and evaluates whether hyperoside (HPS), an anti-adipogenic herbal compound, can improve PCOS by inhibiting adipogenesis.

Main Methods: A combination of in vivo and in vitro models was used to assess the impact of HPS on ovarian function, insulin resistance, and adipogenesis.

View Article and Find Full Text PDF

NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells.

Differentiation

January 2025

Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina/IB-UCLM/Unidad de Biomedicina, Universidad de Castilla-La Mancha/CSIC, Albacete, Spain. Electronic address:

Osteoblastogenesis is governed by complex interplays among signaling pathways, which modulate the expression of specific markers at each differentiation stage. This process enables osteoblast precursor cells to adopt the morphological and biochemical characteristics of mature bone cells. Our study investigates the role of NOTCH signaling in osteogenesis in MC3T3-E1 and C3H10T1/2 cell lines.

View Article and Find Full Text PDF

Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear.

View Article and Find Full Text PDF

Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.

View Article and Find Full Text PDF

Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!