Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161467PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168295PLOS

Publication Analysis

Top Keywords

epsps gene
20
gene copy
16
copy number
16
glyphosate resistance
12
kochia scoparia
8
resistance confirmed
8
confirmed scoparia
8
sugarbeet fields
8
wheat-fallow fields
8
fields montana
8

Similar Publications

Affecting of Glyphosate Tolerance and Metabolite Content in Transgenic Overexpressing Gene from .

Plants (Basel)

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.

View Article and Find Full Text PDF

Highly Efficient Mediated Transformation of Oil Palm Using an -Glyphosate Selection System.

Plants (Basel)

November 2024

National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.

Oil palm ( Jacq.) is the most efficient oil-producing crop globally, yet progress in its research has been hampered by the lack of effective genetic transformation systems. The gene, encoding 5-enolpyruvylshikimate-3-phosphate synthase, has been used as a transgenic selection marker in various crops, including rice and soybean.

View Article and Find Full Text PDF

Unraveling the mechanisms of multiple resistance across glyphosate and glufosinate in Eleusine indica.

Pestic Biochem Physiol

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

The herbicides glyphosate and glufosinate are commonly used in citrus and sugarcane orchards in Guangxi Province, China, wherein the C plant Eleusine indica (L.) Gaertn. is known to be a dominant weed species.

View Article and Find Full Text PDF
Article Synopsis
  • Two polyploid grass weeds in Australia, Hordeum glaucum and Bromus diandrus, have developed resistance to glyphosate through the amplification of the EPSPS gene, which is crucial for their survival.
  • Research involved analyzing the EPSPS gene's genomic structure using molecular cytogenetic methods, showing that resistant plants have significantly more copies of the gene compared to susceptible ones.
  • The findings suggest that unequal crossover during meiosis may be responsible for the gene duplication, contributing to the evolution of glyphosate resistance in these weed species.
View Article and Find Full Text PDF

Comparative specialization of intrinsic cardiac neurons in humans, mice and pigs.

J Physiol

November 2024

UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

Intrinsic cardiac neurons (ICNs) play a crucial role in the proper functioning of the heart; yet a paucity of data pertaining to human ICNs exist. We took a multidisciplinary approach to complete a detailed cellular comparison of the structure and function of ICNs from mice, pigs and humans. Immunohistochemistry of whole and sectioned ganglia, transmission electron microscopy, intracellular microelectrode recording and dye filling for quantitative morphometry were used to define the neurophysiology, histochemistry and ultrastructure of these neurons across species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!