Objectives: Recent animal studies demonstrated that cochlear synaptopathy, a partial loss of inner hair cell-auditory nerve fiber synapses, can occur in response to noise exposure without any permanent auditory threshold shift. In animal models, this synaptopathy is associated with a reduction in the amplitude of wave I of the auditory brainstem response (ABR). The goal of this study was to determine whether higher lifetime noise exposure histories in young people with clinically normal pure-tone thresholds are associated with lower ABR wave I amplitudes.
Design: Twenty-nine young military Veterans and 35 non Veterans (19 to 35 years of age) with normal pure-tone thresholds were assigned to 1 of 4 groups based on their self-reported lifetime noise exposure history and Veteran status. Suprathreshold ABR measurements in response to alternating polarity tone bursts were obtained at 1, 3, 4, and 6 kHz with gold foil tiptrode electrodes placed in the ear canal. Wave I amplitude was calculated from the difference in voltage at the positive peak and the voltage at the following negative trough. Distortion product otoacoustic emission input/output functions were collected in each participant at the same four frequencies to assess outer hair cell function.
Results: After controlling for individual differences in sex and distortion product otoacoustic emission amplitude, the groups containing participants with higher reported histories of noise exposure had smaller ABR wave I amplitudes at suprathreshold levels across all four frequencies compared with the groups with less history of noise exposure.
Conclusions: Suprathreshold ABR wave I amplitudes were reduced in Veterans reporting high levels of military noise exposure and in non Veterans reporting any history of firearm use as compared with Veterans and non Veterans with lower levels of reported noise exposure history. The reduction in ABR wave I amplitude in the groups with higher levels of noise exposure cannot be accounted for by sex or variability in outer hair cell function. This change is similar to the decreased ABR wave I amplitudes observed in animal models of noise-induced cochlear synaptopathy. However, without post mortem examination of the temporal bone, no direct conclusions can be drawn concerning the presence of synaptopathy in the study groups with higher noise exposure histories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313078 | PMC |
http://dx.doi.org/10.1097/AUD.0000000000000370 | DOI Listing |
J Comp Neurol
January 2025
School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
Recent advances in microCT are facilitating the investigation of microstructures in spiders and insects leading to an increased number of studies investigating their neuroanatomy. Although microCT is a powerful tool, its effectiveness depends on appropriate tissue preparation and scan settings, particularly for soft, non-sclerotized tissues, such as muscles, organs, and neural tissues. As the application of microCT in spiders is only in its infancy, published protocols are often difficult to implement due to substantial size variation of the specimens.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel.
Background: A recently released digital solid-state positron emission tomography/x-ray CT (PET/CT) scanner with bismuth germanate (BGO) scintillators provides an artificial intelligence (AI) based system for automatic patient positioning. The efficacy of this digital-BGO system in patient placement at the isocenter and its impact on image quality and radiation exposure was evaluated.
Method: The digital-BGO PET/CT with AI-based auto-positioning was compared (χ, Mann-Whitney tests) to a solid-state lutetium-yttrium oxyorthosilicate (digital-LYSO) PET/CT with manual patient positioning (n = 432 and 343 studies each, respectively), with results split into groups before and after the date of a recalibration of the digital-BGO auto-positioning camera.
Unlabelled: Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.
View Article and Find Full Text PDFPurpose: The study was aimed at determining the effect of exposure to white noise and recorded lullaby during breastfeeding on newborn stress, mother's breastfeeding success, and comfort.
Design And Methods: This single-blinded and three-parallel group randomized controlled study consisted of mothers who had given birth and whose newborns were at a hospital in Turkey. Seventy-five participants completed the study.
Environ Res
January 2025
Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP, Madrid, Spain.
This study aimed to develop exposure-response relationships (ERRs) between road, rail, and air traffic noise and high noise annoyance (HNA) and to assess the HNA disease burden. In 2023, 4 640 adults were cross-sectionally sampled from the five largest cities in Bulgaria. Participants' road, rail/tram, and air traffic HNA was defined as the top two categories (60% cut-off point) of a 5-point scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!